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Abstract

The growth and spread of bacterial populations are processes of broad significance. The
coupling between cells, the structures of their environment, and the chemical makeup of
their environment underlies how bacteria survive and spread. For example, the environ-
ments bacteria inhabit often confine individual cells, modifying both their individual and
collective motion in previously overlooked ways. Thus, in this thesis, I first use biophysi-
cal modeling and numerical simulations to uncover new features of cell motion that arise
due to confinement within a heterogeneous medium. In particular, I develop a contin-
uummodel to better understand experimental observations of traveling bacterial fronts
in highly-confining porous media. Using this model, I explore the influence of confine-
ment on (i) the dynamics of bacteria spreading, (ii) the overall morphology of a migrating
population, and (iii) the robustness of the population to morphological perturbations.
Then, as a step toward similarly describing the dynamics of mixed communities—which
are often composed of different species requiring different chemical conditions to thrive—I
use biophysical modeling and numerical simulations to study the growth of aerobes and
anaerobes in an environment of shared nutrient. In this case, the coupling between nutri-
ent consumption, oxygen consumption, and growth leads to striking new dynamics, such
as hysteresis/bistability and growth oscillations, amidst varying chemical conditions. Al-
together, this work establishes a quantitative framework to predict, and potentially guide
strategies to control, microbial behavior for diverse applications in biomedical science and
the environment.
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1
Introduction

1.1 Modeling bacteria spreading under confinement

The ability of bacterial populations to spread through their surroundings plays a pivotal

role in our everyday lives. In some cases, their spread can be harmful, underlying the pro-

gression of infection in the body1–8 and the spoilage of foods9,10. In other cases, it can be

beneficial, enabling bacteria to deliver drugs to hard-to-reach spots in the body11,12, move
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Figure 1.1: Important contexts for bacteria motion in complex environments. (Left) In the gut and lungs, how bacteria
interact and move through mucus is crucial to human health and medicine. (Middle) Meat spoilage is impacted by the
motion of cells through tissues. (Right) Agriculturally important interactions with plant roots and contaminant removal
using bacteria for bioremediation are both critically impacted by cell motility through packed grains of soil. Graphic
created with BioRender.com.

toward and protect plant roots in soil13–17, and degrade environmental contaminants18–22

(Fig. 1.1). In all these cases, bacteria typically inhabit crowded environments, such as soils,

sediments, and biological tissues/gels, in which solid obstacles confine the cells and regulate

their spreading. Therefore, the development of accurate models of bacterial spreading in a

variety of environmental contexts is critically important for the prediction and control of

bacterial populations in medicine, food, agriculture, and the environment. However, de-

spite their potentially harmful or beneficial consequences, there is still limited understand-

ing of how confinement in a porous medium alters the ability of bacteria to migrate: typical

3Dmedia are opaque, precluding direct observation of cellular motion in situ. Thus, cur-
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rent understanding of migration is based on studies performed in bulk liquid.

Many species of bacteria self-propel in fluid using multiple slender, actively moving∼

5 µm long appendages protruding from the their surface called flagella23 (as shown in Fig.

1.2). A single bacteria cell rotates multiple helical flagella synchronously as a bundle that

“pushes” surrounding fluid24 and propels the cell forward along directed, ballistic “runs” of

speed∼ 25 µm/s. Runs last on average τ̄run ∼ 2 s making the average length traveled during

a run l̄run ∼ 50 µm. Runs end when a reorientation event called a “tumble” occurs. Tum-

bles are caused by one or more flagella rotating in the opposite direction, which forces the

flagellar bundle to splay out and reorient the bacteria before bundling together once more

and pushing the cell along another run in a random new direction. The tumbles last only

∼ 0.1 s, making them effectively instantaneous compared to the duration of runs. There-

fore, over large length and time scales, run-and-tumble motion can be modeled as a random

walk with an active translational diffusion coefficientDb ∼ l̄2run/τ̄run ∼ 1000 µm2/s25.

An important aspect of bacterial motion is the ability to sense and respond to chemical

stimuli. While swimming in bulk liquid as described above, bacteria sense chemicals like

amino acids, sugars, and oxygen. The chemicals transiently bind with cell-surface receptor

complexes, triggering a network of processes within the cell that primarily modulate the

frequency of tumbling events. Adjusting the tumble frequency enables bacteria to dynam-

ically lengthen and shorten run lengths when moving toward regions of higher or lower

This chapter has been adapted from “Chemotactic migration of bacteria in porous media”, by Tapomoy
Bhattacharjee*,Daniel B. Amchin*, Jenna A. Ott, Felix Kratz, and Sujit S. Datta, Biophysical Journal 120,
3483 (2021) *Equal contribution; “Influence of confinement on the spreading of bacterial populations”,
byDaniel B. Amchin, Jenna A. Ott, Tapomoy Bhattacharjee, and Sujit S. Datta, in press PLoS Computa-
tional Biology, (2022); “Chemotactic smoothing of collective migration”, by Tapomoy Bhattacharjee*,Daniel
B. Amchin*, Ricard Alert*, Jenna A. Ott, and Sujit S Datta, eLife 11, 71226 (2022) *Equal contribution;
and “Microbial mutualism generates multistable and oscillatory growth dynamics”, byDaniel B. Amchin,
AlejandroMartínez-Calvo, and Sujit S. Datta, submitted, Biophysical Journal (2022).
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Figure 1.2: Motion of bacteria on the individual and population scales. (Left) An individual cell undergoing run‐and‐
tumble motion is shown by the three leftmost graphics from top to bottom: a cell with bundled flagella propels forward,
unbundling of the flagella reorients the cell, and re‐bundling the flagella propels the cell in a new random direction.
These representative components of run‐and‐tumble motion are shown in the context of a random walk pathway:
tumbles mark the change in direction between straight line runs. (Right) Populations of bacteria undergoing run‐and‐
tumble motion spread diffusively in all directions. Bacteria can also sense a chemoattractant gradient (orange) leading to
directed motion along the gradient. The random and directed components of motion both occur simultaneously, leading
to simultaneous spreading and overall population translation. Graphic created with BioRender.com.

concentration of chemoattractants, respectively. As a result, the random walk determined

by run-and-tumble motion is biased25. The chemotactic coefficient χ describes the cell’s

ability to bias the random walk26,27. χ has the same units as the diffusion coefficientDb;

together χ andDb describe the extent of directed and undirected motion, respectively, as

shown in Fig. 1.2 for a population of cells (green circles) exposed to a nutrient gradient (or-

ange triangle). χ specifically appears within the flux of bacteria due to chemotaxis given by

bvc, where b is the number density of cells and vc ≡ χ∇f(c) is the chemotactic velocity; the

function f(c) describes the ability of bacteria to sense nutrient at a concentration c28–31.

At the population scale, the process of chemotaxis can mediate directed collective mo-
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tion, or migration. A striking example arises when cells consume a surrounding chemical

that elicits a chemotactic response. In this case, cells collectively generate a local gradient of

the surrounding attractant that they in turn bias their motion along, leading to the forma-

tion of a coherent front of cells that continually propagates28,29,32–34. This phenomenon

can enable populations to escape from harmful environments or to colonize new terrain28.

Chemotactic migration has therefore been extensively investigated under diverse conditions

in bulk liquid29,32,34. Meanwhile, continuum-scale models have been developed that can

successfully capture the key features of this chemotactic spreading in bulk liquids26–29,35–37.

However, physical confinement in a tight porous medium imposes new constraints on

the ability of cells to move with important consequences for how to capture their motility

behavior in a model. For example, recent experiments have demonstrated that the paradigm

of run-and-tumble motility does not describe isolated cells of Escherichia coli (E. coli) in a

gradient-free porous medium; instead, the cells exhibit a distinct mode of motility in which

they are intermittently and transiently trapped between “hops” through the pore space

due to interactions with the surrounding solid matrix38,39 (Fig. 1.3). Moreover, while cells

in bulk liquid bias their motion in response to a perceived nutrient gradient primarily by

modulating their reorientation frequency, experiments suggest that confinement in a tight

porous medium can suppress the ability of cells to do so38.

Indeed, studies of microswimmers that self-propel akin to bacteria suggest that collisions

with the solid matrix can suppress, or even completely abolish, coordinated motion40–43;

thus, is it unclear whether coordinated, multicellular migration can even occur in confined

spaces. Nevertheless, studies in viscoelastic agar demonstrate that chemotactic migration

can still arise in these complex media, although the presence of dispersed obstacles strongly
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Figure 1.3: Bacteria undergoing a hop‐and‐trap random walk within 3D media of different pore sizes. Single‐cell tra‐
jectories reveal two modes of motion: during hops, bacteria move through extended, directed paths through the pore
space, and during traps, bacteria are confined for extended periods of time. Images with black backgrounds show a
region of width∼ 15 µm depicting time projections of the cell body in the hopping and trapping states; trapped cells
continually reorient their bodies until they escape and hop through the pore space once more. Decreasing pore size
decreases hop lengths, indicated by the green and black trajectories (characteristic pore sizes are 3.6, 2.5, and 1.5 μm
from left to right). Scale bar represents 10 μm. Repurposed from38.

hinders spreading44,45. Thus, it remains unknown 1) how confinement modifies individual

and collective bacterial motion and 2) how to model these effects.

In this dissertation, I address these gaps in knowledge by developing continuummodels

guided by experiments that capture collective bacterial migration under confinement. First,

I describe how confinement in a porous medium strongly alters the chemotactic migration

of E. coli through a transparent model porous medium, motivating key changes to existing

continuummodels to appropriately account for confinement (Chapter 2). By carefully

exploring this continuummodel, I then detail how increased confinement mediates a tran-

sition from chemotactic spreading of motile cells to growth-driven spreading via a slower,

jammed front (Chapter 3).

1.2 Morphological robustness to perturbations in collective migration

In the previous subsection, I motivated my work describing how individual motion of cells

is modified by confinement, giving rise to confinement-dependent properties of collec-
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tive migration, as further detailed in Chapters 2 and 3. In this subsection, I will motivate

my work building upon this understanding of the connection between individual and

population-scale motion to elucidate a mechanism for migrating populations to withstand

perturbations in overall morphology, as described further in Chapter 4.

The chemotactic migration of bacteria described in the prior subsection is an example of

coordinated collective motion, a class of phenomena wherein numerous individuals orga-

nize their motion on a scale much larger than that of the individual. The flocking of birds,

schooling of fish, herding of animals, and procession of human crowds are all other exam-

ples of collective migration. These phenomena also manifest more broadly at smaller scales,

such as in populations of other prokaryotic and eukaryotic cells, as well as dispersions of

synthetic self-propelled particles. In addition to being a fascinating example of emergent

behavior, collective migration can be critically important—enabling populations to follow

cues that would be undetectable to isolated individuals46, escape from harmful conditions

and colonize new terrain28, and coexist47. Thus, diverse studies have sought to understand

the mechanisms by which collective migration can arise.

Less well understood, however, is how collective migration persists after a population

is confronted with perturbations. These can be external, stemming from heterogeneities

in the environment40–43,48–51, or internal, stemming from differences in the behavior of

individuals52–54. Mechanisms by which such perturbations can disrupt collective migra-

tion are well documented. Indeed, in some cases, perturbations can abolish coordinated

motion throughout the population entirely40–43,49,50,52,53. In other cases, perturbations

couple to the active motion of the population to destabilize its leading edge, producing

large-scale disruptions to its morphology48,55–60. Indeed, for one of the simplest cases of
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collective migration—via chemotaxis, the biased motion of cells up a chemical gradient—

morphological instabilities can occur due to the disruptive influence of hydrodynamic61–63

or chemical-mediated64–69 interactions between cells. By contrast, mechanisms by which

migrating populations can withstand perturbations have scarcely been examined.

To address this gap in knowledge, I numerically solve the model developed in Chapter 2

in 2D to reveal how limitations in single-cell sensing of stimuli influence large-scale popula-

tion morphology as observed experimentally (Chapter 4).

1.3 Growth of mixed microbial populations

Microbial communities often comprise different species having distinct functions, metabolic

capabilities, and requirements for survival; nevertheless, they can stably coexist as a group,

often in dynamic environments with strongly-fluctuating nutrient availability. How is this

coexistence achieved?

As a necessary first step toward addressing this question, numerous studies have docu-

mented the varying ways in which different species in a community interact, ranging from

mutually-harmful competition to mutually-beneficial cooperation. This network of in-

teractions can give rise to fascinating emergent behaviors whose occurrence is remarkably

consistent across diverse communities. For example, a common finding is that microbial

communities can havemultiple stable states, each characterized by its own unique compo-

sition of the different coexisting species, and each of which is stable under different envi-

ronmental conditions70–84. In some cases, these states aremultistable—i.e., multiple stable

states can arise under identical conditions—leading, for example, to hysteretic behavior in

which the state of the community depends not just on current conditions, but also on the

8



history of how they were established71–73,78,85–95. Multistability can also lead to dynamic

behavior in which the community continually fluctuates between multiple states, often

with periodic oscillations77,82,84,88,88,96–102.

Competition for limited resources is typically inherent in multi-species communities;

hence, much work has focused on understanding ways in which such behaviors can emerge

in communities with purely competitive interactions82,87,88,92–94,97,103–107. However, a

growing body of research is revealing that mutualistic interactions, such as cross-feeding

of metabolites, also arise and play critical roles in many naturally-occurring microbial com-

munities76,80,108–133. For example, microbial mutualism regulates the consumption of ma-

rine particulate organic matter73,74,134,135, plant growth136–138, how carbon and nitrogen

are fixed in or released from the ground beneath our feet139, and degradation of environ-

mental contaminants140—with profound implications for biogeochemical processes in the

world around us. Such interactions also play key roles in our own bodies. A prominent ex-

ample is that of microbial communities in the gut, lung, and mouth, in which anaerobic

bacteria can ferment large carbon-rich macromolecules that are inaccessible to nearby aer-

obes, releasing smaller byproducts that support the growth of the aerobes, which in turn

help support anaerobic growth by consuming oxygen71,141–144—and collectively, such

aerobe-anaerobe communities help maintain host health145, or conversely, contribute to

disease141,146–150. Similar mutualistic aerobe-anaerobe communities also arise and play cru-

cial roles in many other ecological and biotechnological settings139,151–157. Understanding

howmutualism influences the overall behavior of a microbial community is therefore both

fundamentally interesting and practically important for predicting and controlling a variety

of environmental, agricultural, biomedical, and industrial processes.
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Given that mutualistic interactions are prevalent in microbial communities, and that

such communities frequently exhibit multistability, hysteresis, and time-dependent be-

haviors, we asked the questions: Can mutualism generate these complex behaviors? And if

so, are there simple biophysical principles that describe these behaviors and the conditions

under which they arise? Prior experiments on model two-species communities of aerobes

and anaerobes in bioreactors71,72,96,158 provide useful guidance in addressing these ques-

tions. In particular, this prior work demonstrated experimentally that such communities

can indeed exhibit multistability, hysteresis, and time-dependent behaviors. Moreover, it

showed that many of these behaviors can be recapitulated using sophisticated models of the

intricate network of metabolic interactions between cells, as reconstructed from genomic

data71,159–162. However, such networks are made up of a multitude of vastly-differing in-

teractions, ranging from competitive to cooperative; thus, the role played by mutualism in

generating these behaviors is obfuscated, making the formulation of simple overarching

biophysical principles challenging.

In Chapter 5, I address this challenge by mathematically modeling a two-species commu-

nity of aerobes and anaerobes having a simplified set of mutualistic interactions between

them. Specifically, inspired by the prior studies noted above, I consider the case in which

the anaerobes break down non-metabolized complex carbohydrate to simple sugar that is

shared by the entire community—but only under low-oxygen conditions that are estab-

lished through aerobic consumption of oxygen. Remarkably, even in this highly-simplified

community, I find that multistability, hysteresis, and time-dependent behaviors arise, me-

diated by carbon and oxygen fluxes just as in experiments. Moreover, the simplicity of the

model enables me to distill out biophysical principles that quantify how oxygen depletion

10



and nutrient sharing jointly enable coexistence—highlighting the pivotal role of mutualism

in enabling coexistence without needing to invoke antagonism. These principles quanti-

tatively capture the conditions under which different community behaviors arise in the

model, providing a foundation for future studies of more complex multi-species microbial

communities in a broad range of settings.

Altogether, the work described in Chapters 2-4 provides a framework to predict and

control the migration of bacteria and potentially other forms of active matter in general,

in complex environments with physical confinement. Additionally, the work described in

Chapter 5 provides a way to predict and control the growth behavior of more complex bac-

terial communities in response to nutrients. Future work could explore more sophisticated

models that combine the frameworks developed in Chapters 2-5 to predict and control the

behavior of bacterial communities more broadly, in environments with both physical and

chemical complexities.
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2
Chemotactic migration of bacteria in

porous media

2.1 Introduction

As detailed in Chapter 1, current understanding of migration of bacteria is based on studies

performed in bulk liquid, despite the fact that many bacteria inhabit tight porous media

12



such as soils, sediments, and biological gels. Thus, experiments performed by others in our

lab directly visualized the chemotactic migration of E. coli populations in well-defined 3D

porous media in the absence of any other imposed external forcing (e.g., flow). These ex-

periments revealed that pore-scale confinement is a strong regulator of migration. Strik-

ingly, our analysis of these data reveals that cells use a different primary mechanism to

direct their motion in confinement than in bulk liquid, as detailed below. Furthermore,

confinement markedly alters the dynamics and morphology of the migrating population—

features that can be described by a continuummodel we developed, as detailed below, but

only when standard motility parameters are substantially altered from their bulk liquid

values to reflect the influence of pore-scale confinement.

2.2 Results

2.2.1 Pore-scale confinement regulates, but does not abolish,

chemotactic migration

Others in our lab prepare porous media by confining hydrogel particles, swollen in a de-

fined rich liquid medium with L-serine as the primary nutrient and attractant at concentra-

tions similar to those used in previous studies28,45, at prescribed jammed packing fractions

in transparent chambers. The media have three notable characteristics, as further detailed

in the Materials and methods section in the online version of this work163. First, the pack-

This chapter has been adapted from “Chemotactic migration of bacteria in porous media”, by Tapomoy
Bhattacharjee*,Daniel B. Amchin*, Jenna A. Ott, Felix Kratz, and Sujit S. Datta, Biophysical Journal 120,
3483 (2021) *Equal contribution. Author Contributions: T.B. and S.S.D. designed the experiments; T.B.
performed all experiments; D.B.A., J.A.O., F.K., and S.S.D. designed the numerical simulations; D.B.A. per-
formed all numerical simulations; T.B., D.B.A., and S.S.D. analyzed the data; S.S.D. designed and supervised
the overall project. All authors discussed the results and implications and wrote the manuscript.
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ings have interparticle pores that the cells swim through (Fig. 2.1A, top panel), with a mean

pore size ξ that can be tuned in the range∼ 1 to 10 μm (Fig. S1 in the online version of this

work163) —characteristic of many bacterial habitats.

Figure 2.1: Propagating cellular fronts in porous media. (A) Schematic of a cylindrical population (green cylinder) 3D‐
printed within a porous medium made of jammed hydrogel particles (gray). The surrounding medium fluidizes as cells
are injected into the pore space, and then rapidly re‐jams around the cells, as shown in the lower schematic. Thus,
the starting architecture of the 3D‐printed population is defined by the path traced out by the injection nozzle. Each
cylinder requires∼ 10 s to print, two orders of magnitude shorter than the duration between successive 3D confocal
image stacks,∼ 10 min. (B) Top and bottom panels show bottom‐up (xy plane) and end‐on (xz plane) projections of
cellular fluorescence intensity measured using 3D confocal image stacks. Images show a section of an initially cylindrical
population at three different times (0, 1, 2.7 h shown in magenta, yellow, cyan) as it migrates radially outward in a
porous medium. Panels (C–D) show the same experiment in media with smaller pores; (B), (C), (D) correspond to media
with ξ= 2.2, 1.7, and 1.2 μm, respectively. Magenta, yellow, and cyan correspond to 0, 1.8, and 10.3 h in (C) and
0, 1.3, and 17.3 h in (D). All scale bars denote 200 μm; thus, a pixel corresponds to∼ 1 cell, indicating that the cells
coherently propagate via multicellular fronts over length scales spanning thousands of cell body lengths.
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The pores are sufficiently large to enable cells to swim through without deforming the

medium, and thus, the packings act as rigid, static matrices. Moreover, because the hy-

drogel particles are highly swollen, they are freely permeable to oxygen and nutrient. As a

result, the influence of geometric confinement on cellular migration can be isolated and

systematically investigated without additional complications arising from the influence

of confinement on the spatial distribution of nutrient. Second, the media are yield-stress

solids (Fig. S1 in the online version of this work163) ; we can therefore use an injection noz-

zle mounted on a motorized translation stage to introduce cells into the pore space along

a prescribed 3D path. As it moves through the medium, the nozzle locally rearranges the

hydrogel packing and gently extrudes cells into the interstitial space; then, as the nozzle

continues to move, the surrounding particles rapidly densify around the newly-introduced

cells, re-forming a jammed solid matrix164–166 that surrounds the population with minimal

alteration to the overall pore structure165 (Fig. 2.1A, bottom panel). This feature enables

populations of bacteria to be 3D-printed in defined initial architectures within the porous

media. Finally, these media are transparent, enabling tracking of fluorescent cells in 3D as

they move over length scales ranging from that of single cells to that of the overall popu-

lation. This platform thus overcomes three prominent limitations of common semi-solid

agar assays: they do not have defined pore structures, they do not provide control over the

spatial distribution of bacteria within the pore space, and their turbidity precludes high-

fidelity and long-time tracking of individual cells.

To establish a defined initial condition akin to conventional agar inoculation assays,

other members of our lab 3D-print a∼ 1 cm-long cylinder of densely-packed E. coli, con-

stitutively expressing green fluorescent protein (GFP) throughout their cytoplasm, within a
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medium with ξ= 2.2 μm (Fig. 2.1B, magenta). The radial symmetry simplifies analysis of

how the cells subsequently move, and the cell concentrations tested mimic those in dense

aggregates that frequently arise in environmental and biological settings167–175.

After 3D-printing, the outer periphery of the population spreads slowly (Fig. 2.1B,

magenta-yellow and Fig. 2.2A, magenta-green), with a radial positionRf that varies with

time t as∼ t1/2 (Fig. 2.2D, blue). Then, remarkably, this periphery spontaneously organizes

into a coherent front of cells with an extended tail. This front continually propagates ra-

dially outward (Fig. 2.1B, cyan; Fig. 2.2A, blue to cyan), reaching a constant speed vfr ≈

14 μm/min (Fig. 2.2D, blue) after an induction time τ∗ ≈ 2 h—demonstrating that co-

ordinated multicellular migration can indeed occur in porous media. The inner region of

the population, by contrast, remains fixed at its initial position and eventually loses fluo-

rescence (Fig. S2 in the online version of this work163), indicating that it is under oxygen-

limited conditions.

Without nutrient, propagating fronts do not form at all, even though cells still retain

motility (Fig. S3A-B in the online version of this work163). Additionally, reducing the

concentration of cells in the initial population—which reduces the rate of overall nutrient

consumption—increases the time required for front formation (Fig. S3C in the online ver-

sion of this work163). Thus, front formation is mediated by bacterial consumption of nu-

trient, similar to chemotactic migration in liquid media. However, the propagation speed

is over two orders of magnitude smaller than the unconfined cellular swimming speed, and

over an order of magnitude smaller than the speed of unconfined fronts29,34: clearly pore-

scale confinement regulates the dynamics of chemotactic migration.
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Figure 2.2: Propagation of cellular fronts is regulated by pore‐scale confinement. (A–C) Azimuthally‐averaged fluo‐
rescence intensity from cells obtained using 3D confocal stacks, normalized by its maximal initial value, for different
radial positions and at different times. (A), (B), (C) show experiments performed in media with ξ= 2.2, 1.7, and 1.2 μm,
respectively. In all cases, the population initially spreads outward, and then organizes into a front, indicated by the peak
in the profiles, that propagates outward. (D) Upper panel shows leading‐edge positionRf of the propagating front over
time t; inset shows raw data, while main panel shows data rescaled by the lengths and times (star) of the deviation from
the short‐time slowRf ∼ t1/2 scaling. Data for ξ= 1.7 and 1.2 μm begin at a later time to ensure a reliable calculation
of the azimuthal average. Lower panel shows variation of front propagation speed (triangles), determined from the long‐
time variation of the leading‐edge position, and induction time (squares), defined as the time at which the deviation
from the short‐time slowRf ∼ t1/2 scaling is observed, with mean pore size. A replicate experiment for each pore size
yields nearly identical results, as shown in Fig. S4 in the online version of this work163, confirming the reproducibility
of our observations. The uncertainty in front position in the top panel is determined by varying the intensity threshold
value used to determine the front position by± 10%. The uncertainty in the front speed vfr is determined through the
uncertainty in the linear fit of the measured position versus time data beyond the induction time τ∗; the uncertainty in
τ∗ itself is given by the temporal resolution of the imaging. In all cases, the error bars associated with the uncertainty in
the measurements are smaller than the symbol size.

2.2.2 Individual cells bias their motion via a fundamentally different pri-
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mary mechanism in porous media

Although the fronts of cells continually propagate outward, the individual cells do not:

single-cell tracking at the leading edge of a front reveals that the cells still continue to move

in all directions (Fig. 2.3A-B). Our tracking focuses on cells at the leading edge to enable

high-fidelity and long-time tracking while avoiding artifacts arising from the high cellular

density in the crowded peak of the front. Moreover, it facilitates direct comparison with

the macroscopic measurements shown in Fig. 2.2, which also focus on the motion of the

leading edge; indeed, previous experiments performed in bulk liquid29 have shown that the

dynamics of cells at the leading edge of a chemotactic front are representative of the overall

front dynamics.

Cells in the front exhibit hopping-and-trapping motility, much like isolated cells in

porous media38,39. In particular, each cell moves along a straight path of length lh within

the pore space over a duration τh—a process known as hopping—until it encounters a tight

spot and becomes transiently trapped. It then constantly reorients its body until it is able

to unbundle its flagella after a duration τt, which enables it to escape and continue to hop

through the pore space38. This mode of motility is distinct from the paradigm of run-and-

tumble motility exhibited in bulk liquid; in bulk liquid, runs extend along straight-line

paths∼ 40 μm long, while in a tight porous medium, a cell collides with an obstacle and

becomes transiently trapped well before it completes such a run. Thus, hops are runs that

are truncated by collisions with the surrounding solid matrix, with lengths that are set by

the geometry of the pore space39. This process can be modeled as a random walk—in this

case, with steps given by the hops, punctuated by pauses due to trapping (Fig. 2.3B).

How do these seemingly randommotions collectively generate a directed, propagating

18



Figure 2.3: Biased motion of single cells in propagating fronts is altered by confinement. (A) Magnified bottom‐up
fluorescence intensity projection of a propagating front, showing individual cells. Scale bar denotes 200 μm. (B) Rep‐
resentative trajectory of a single cell at the leading edge of the front. Scale bar denotes 10 μm. (C) Schematic showing
the primary mechanism by which cells bias their motion in bulk liquid: run length modulation. (D) Mean lengths of hops
along different orientations |θ| with respect to the front propagation direction. We observe no marked directional bias.
(E) Symbols show the probability density of hopping lengths along different orientations within the ranges indicated
by the legend; curve shows measured chord length distribution function, which is determined by geometry, for the
porous medium. The agreement between the symbols and the curve indicate that the distribution of hopping lengths
is set solely by pore geometry, independent of orientation. (F) Schematic showing the primary mechanism by which
cells bias their motion in porous media: hop orientation modulation. (G) Probability density of hopping along different
orientations. We observe a slight directional bias: the bars are longer, indicating more hops, for orientations along the
direction of front propagation, 0≤ |θ| ≤ 90◦. (H) Chemotactic migration velocity calculated using Eq. 2.1, replacing
orientation‐dependent hopping lengths with the mean (first bar) or replacing orientation‐dependent hopping probability
with a uniform distribution (second bar). Error bars show standard deviation of velocity calculated using different angle
bin widths. All data are for ξ= 2.2 μm, from an additional replicate of the experiment presented in Fig. 2.2.
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front? In bulk liquid, cells detect changes in nutrient along each run, and then primar-

ily modulate the frequency of tumbling to bias their run length—resulting in longer runs

along the direction of propagation and shorter runs in the opposite direction23 (Fig. 2.3C).

However, it is unlikely that a similar mechanism could mediate migration in porous me-

dia: cells cannot elongate their hops due to obstruction by the solid matrix, nor can they

shorten hops because confinement by the matrix suppresses the flagellar unbundling re-

quired to stop mid-hop38. Single-cell tracking confirms this expectation: the mean hopping

lengths l̄h measured for hops along a given orientation θ relative to the direction of front

propagation show no marked directional bias (Fig. 2.3D). The distribution of hopping

lengths is instead set by pore geometry, independent of θ, as quantified by the chord length

distribution—the probability that a straight chord of a given length lc fits inside the pore

space (Fig. 2.3E). Hence, another mechanismmust be at play.

Another mechanism also arises, albeit weakly, for chemotactic migration in bulk liquid:

cells modulate the number of flagella that unbundle, and thus the degree to which their

bodies reorient, during tumbling to bias the orientation of their next run40,176–178 (Fig.

2.3F). However, this mechanism only accounts for∼ 30% of the overall speed of front

propagation in bulk liquid, with run length anisotropy accounting for∼ 70%34. Hence,

why E. coli also employ this secondary mechanism during chemotaxis has remained a puzzle

thus far.

Given that cells cannot appreciably bias their hop lengths in a porous medium, we con-

jecture that this putatively secondary mechanism—biasing hopping orientation—is the

primary driver of chemotactic migration in porous media. In this mechanism, cells detect

local changes in nutrient, which arise due to consumption by the entire population, along
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each hop. The cells then modulate their reorientation during trapping to bias the direction

of their next hop along the nutrient gradient. Indeed, 90% of measured trapping events

are shorter than 4 s (Fig. S5 in the online version of this work163) the mean duration over

which E. coli “remember” exposure to nutrient179, suggesting that this mechanism is plausi-

ble.

To directly test this hypothesis, we use our single-cell tracking to examine the probability

of hopping along a given orientation, p(θ). Consistent with our expectation, we find that

hops along the direction of front propagation (0≤ |θ|< 90◦ in Fig. 2.3G) are slightly more

frequent than hops in the opposite direction (90< |θ| ≤ 180◦). To quantify the relative

importance of this bias in the hopping orientation, we use these data to directly compute

the chemotactic migration velocity

v =
∫ 360◦

0◦

p(θ)̄lh(θ)cosθ
τ̄h + τ̄t

dθ (2.1)

Replacing l̄h(θ) by its orientation-averaged value only changes v by≈ 20% (first bar in Fig.

2.3H)—confirming that biasing hopping length is not the primary mediator of chemotaxis,

in stark contrast to the case of bulk liquid. Strikingly, however, replacing p(θ) by a uniform

distribution decreases v precipitously, by over 80% (second bar in Fig. 2.3H)—confirming

that biasing hopping orientation is the primary driver of chemotactic migration in porous

media.

To further explore the influence of pore-scale confinement, we repeat our experiments

in two additional media having even smaller mean pore sizes, 1.7 and 1.2 μm. We again ob-

serve two regimes of expansion in time, with initial slow spreading followed by motion with
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Rf ∼ t (Fig. 2.1C-D; Fig. 2.2B-C; Fig. 2.2D, green and magenta). Confinement is again a

key regulator of these dynamics. With increasing confinement, the induction time increases

while the front propagation speed considerably decreases (Fig. 2.2D, lower panel). The

morphology of the front itself is also strongly altered by confinement: both the maximal

cell density within the front, and the width of its tail, decrease with increasing confine-

ment (Fig. 2.2B–C). Single-cell tracking again reveals that cells migrate by biasing hopping

orientation—not by biasing hopping length, as is generally assumed, and that this bias con-

sistently represents the primary contribution to the chemotactic migration velocity (Figs.

2.4–2.5). These effects are all missed by models of chemotactic migration in bulk liquid,

in which front dynamics are determined solely by the intrinsic ability of cells to alter and

respond to their chemical environment, without considering physical constraints imposed

by the environment26. Other models consider environmental constraints by treating cellu-

lar motility parameters as fitting parameters or assuming their values using idealized mod-

els45,180–182. By contrast, our experiments provide a direct way to assess how current models

can be extended and applied to describe chemotactic migration in tight porous media, as

detailed below.

22



Figure 2.4: Bias in hopping orientation is the primary contributor to chemotactic migration. Plots show migration veloc‐
ity calculated using the discrete sum version of Eq. 2.1, as described in the Methods subsection “Connecting single‐cell
motility to front propagation” in §2.4.1, incorporating all factors (magenta), replacing orientation‐dependent hopping
lengths with the mean (dark blue) or replacing orientation‐dependent hopping probability with a uniform distribution
(teal). From left to right, data for the largest, intermediate, and smallest pore sizes are shown for different choices of the
bin width, showing that the result reported in Fig. 2.3 is not sensitive to the choice of bin width. The data show that
removing the bias in hopping orientation makes the largest difference in the calculated migration velocity for all pore
sizes—that is, the bias in hopping orientation is the primary contributor to chemotactic migration.
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Figure 2.5: Biased motion of single cells in medium‐ and small‐pore media. (A) Mean lengths of hops along different
orientations |θ| with respect to the propagation direction. (B) Symbols show probability density of hopping lengths
along different orientations within the ranges indicated by the legend; curve shows measured chord length distribu‐
tion function for the porous medium. (C) Probability density of hopping along different orientations. We consistently
observe a slight directional bias: the bars are longer, indicating more hops, for orientations along the direction of front
propagation, 0≤ |θ| ≤ 90◦. In particular, 51.6% and 52.2% of hops have an angle between [0, 90◦) while only
48.1% and 46.9% have an angle between (90◦, 180◦] in media with ξ= 1.7 and 1.2 μm, respectively; the remaining
0.3% and 0.9%, respectively, occur at 90◦. (D) Chemotactic migration velocity calculated using Eq. 2.1, replacing
orientation‐dependent hopping lengths with the mean (first bar) or replacing orientation‐dependent hopping probability
with a uniform distribution (second bar). The second bar is slightly negative, indicating that measured hop lengths are
on average slightly larger opposite the propagation direction–likely due to limited statistics. That front propagation
would halt entirely or reverse without a bias in hopping orientation demonstrates that this bias is the primary driver of
chemotactic migration. Error bars show standard deviation of velocity calculated using different angle bin widths.
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2.2.3 A continuum description of chemotactic migration requires motility

parameters to be strongly altered

Our experiments reveal a clear separation of length and time scales between the biased ran-

dom walks of individual cells (Fig. 2.3A–B) and the directed propagation of the overall

front over large length and time scales (Figs. 2.1–2.2)—hinting that the macroscopic fea-

tures of front propagation can be captured using a continuum description. Thus, we test

whether front dynamics can be described using the classic Keller-Segel model, which is con-

ventionally applied to chemotactic migration in bulk liquid or viscoelastic media26,28,29,34,45.

Specifically, we model the evolution of the nutrient concentration c(r, t) and number den-

sity of bacteria b(r, t) via the coupled equations:

∂c
∂t

= Dc∇2c− bκg(c) (2.2)

∂b
∂t

= Db∇2b− χ0∇ · [b∇f(c)] + bγg(c) (2.3)

as detailed in §2.4.2. Equation 2.2 relates the change in c to nutrient diffusion through

the medium and consumption by the population;Dc is the nutrient diffusivity, κ is the

maximal consumption rate per cell, and g(c) = c/(c+ cchar) describes the influence of nutri-

ent availability relative to the characteristic concentration cchar throughMichaelis-Menten

kinetics. Equation 2.3 in turn relates the change in b to undirected hopping-and-trapping
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with diffusivityDb, biased hopping with the chemotactic coefficient χ0 and nutrient sens-

ing function f(c) = log [(1+ c/c−) / (1+ c/c+)], where c− and c+ quantify the range of

cellular sensing, and net growth with maximal rate γ. Hence, this model relies on two

standard quantities to describe the motion of the population over large length and time

scales: the diffusivityDb, which characterizes undirected spreading, and the chemotactic

coefficient χ0, which characterizes the ability of cells to bias their motion in response to a

sensed nutrient gradient. In bulk liquid, their values simply depend on intrinsic cellular

processes: Db is determined by the run speed and tumbling frequency23, while χ0 addition-

ally depends on properties of cellular chemoreceptors and signal transduction26. In porous

media, however, confinement inhibits the ability of cells to move; it is therefore unclear

whether the Keller-Segel model can describe front propagation in these more complex set-

tings, and if so, how it must be modified.

To answer these questions, we numerically solve Eqs. 2.2-2.3 using values for all param-

eters estimated from direct measurements, as detailed in §2.4.2 and §2.4.3—except χ0,

which we obtain by directly matching the asymptotic front propagation speed measured

in our experiments. Importantly, we obtainDb from direct measurements of bacterial

hopping lengths and trapping durations as previously established38, instead of treating

it as an additional free parameter or assuming its value using idealized models as is often

done45,180–182. Furthermore, to facilitate comparison to the experiments, we determine

the cellular signal—the analog of the experimentally-measured fluorescence intensity in

the numerical simulations—by incorporating the fluorescence loss observed in the experi-

ments under starvation conditions. Finally, because confinement increases the local density

of cells in the pore space, increasing the propensity of neighboring cells to collide as they
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hop through the pore space, we explicitly account for possible cell-cell collisions that trun-

cate bothDb and χ0 at sufficiently large values of b. Indeed, the porous media are highly

confining, with pore size is always< 8 μm (Fig. S1 in the online version of this work163) ,

comparable to the size of a single cell body and its flagella. Thus, because the pore space is

too small to fit multiple cells side-by-side, we expect that cell-cell interactions are necessarily

restricted to end-on interactions. This feature of confinement in a tight porous medium

is starkly different from the case of cells in bulk liquid, in which short-range side-by-side

interactions promote alignment of cell clusters and result in cooperative motions at high

cell densities. Single-cell imaging of cell-cell interactions in the pore space confirms this ex-

pectation, indicating that cell-cell collisions truncate the hopping lengths of moving cells

(Movies S8 and S9 in the online version of this work163) . Motivated by this observation,

we adopt a simplified mean-field treatment of cell-cell interactions in which cells truncate

each other’s hops in a density dependent manner. Because both motility parametersDb

and χ0 reflect the ability of cells to move through the pore space via a biased random walk

with a characteristic step length l, we expect that they vary as∝ l2, with l set by the mean

chord length l̄c in the absence of collisions. However, when the cell density is sufficiently

large, the mean distance between neighboring cells, l̄cell, decreases below l̄c; in this case, mo-

tivated by the experimental observations, we expect that cell-cell collisions truncate l to≈

l̄cell. Therefore, wherever 0 ≤ l̄cell < l̄c, we multiply both the density-independent param-

etersDb and χ0 by the density-dependent correction factor (̄lcell/̄lc)
2. In this treatment, as

the cellular density increases, and thus the mean spacing between cells decreases, they in-

creasingly truncate each other’s motion and the motility parametersDb and χ0 decrease –

eventually becoming zero when the cells are so dense that they do not have space to move.
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In this manner, we make the diffusivity and chemotactic parameters functions of cell den-

sity. The full details of the form ofDb(b) and χ(b) are given in §3.2.3 and Eqs. 3.5, 3.6, and

3.7.
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Figure 2.6: Continuum model captures dynamics of propagating cellular fronts in porous media. (A‐C) Numerical sim‐
ulations of cellular signal (solid lines) and nutrient concentration (dashed lines), normalized by maximal initial value, for
different radial positions and at different times. Top to bottom panels show results for media with ξ= 2.2, 1.7, and
1.2 μm, respectively. In all cases, the population initially spreads outward, and then organizes into a front, indicated
by the peak in the profiles, that propagates outward, as in the experiments. (D) Leading‐edge positionRf of the prop‐
agating front over time t; inset shows raw data, while main panel shows data rescaled by the lengths and times (star)
of the crossover from the short‐time slowRf ∼ t1/2 scaling to the long‐time fastRf ∼ t1 scaling. We observe slight
deviations from theRf ∼ t scaling for the ξ= 2.2 μm data at long times; these reflect the influence of boundaries
in the system, as indicated by additional simulations (Fig. 2.7). (E) Upper panel shows variation of front propagation
speed (upward triangles), determined from the long‐time variation of the leading‐edge position, and induction time
(squares), defined as the time at which the crossover from the short‐time slowRf ∼ t1/2 scaling to the long‐time fast
Rf ∼ t1 scaling is observed, with mean pore size, as determined from the simulations. Lower panel shows variation
of cellular diffusivity (circles), which is directly obtained from experiments, and chemotactic coefficient (downward
triangles), which is determined from the simulations, with mean pore size. The uncertainty in front position in the top
panel is determined by varying the threshold value used to determine the front position by± 10%. The uncertainty
in the front speed vfr is determined by computing the standard deviation in the vfr obtained by measuring the slope
of the measured position versus time data for three successive 30 min periods at the end of the simulation, while the
uncertainty in τ∗ is again given by the temporal resolution of the simulation. In all cases, the error bars associated with
the uncertainty in the measurements are smaller than the symbol size.
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This model indeed yields fronts of cells that form and propagate outward (solid curves

in Fig. 2.6A-C), driven by their self-generated nutrient gradient (dashed curves); in the ab-

sence of growth, fronts still form and propagate, but their motion is hindered in a confinement-

dependent manner (Fig. 2.7).

Figure 2.7: In the absence of growth, fronts still form and propagate, but are hindered in a confinement‐dependent
manner. Additional simulations of chemotactic migration without bacterial growth; panels A‐C correspond to the same
simulations as in Fig. 2.6A‐C, but with γ= 0; colors correspond to the same times as in Fig. 2.6A‐C. In the media with
largest pores (A), front propagation appears to be similar to the case of non‐zero growth, indicating that chemotaxis
plays a dominant role in driving front propagation in these media; compare panel A to Fig. 2.6A. In the media with in‐
termediate sized pores (B), front propagation is slower without growth; compare panel B to Fig. 2.6B. In the media with
smallest pores (C), propagating fronts do not appreciably form over the simulation time scale, indicating that growth
plays a dominant role in driving front propagation in these media; compare panel C to Fig. 2.6C. The resultant dynamics
of the position of the leading edge of the front are shown in (D).
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The numerical solutions thus obtained capture the main features observed in the exper-

iments: for all three pore sizes, the population first spreads slowly, driven by the initially

steep gradient in bacterial density, and then transitions to motion withRf ∼ t (Fig. 2.6D;

Fig. 2.8) once this gradient has smoothed out (Fig. 2.9). Moreover, with increasing confine-

ment, the induction time increases, while the front speed, the maximal cell density, and the

width of the tail all decrease considerably (Fig. 2.6A-C, E)—consistent with the experimen-

tal results. As expected, the dynamics and morphologies of the fronts depend strongly on

the motility parametersDb and χ0. However, unlike the case of bulk liquid, for which these

parameters are set solely by intrinsic cellular processes, in tight porous media, confinement

reduces these parameters by up to three orders of magnitude (Fig. 2.6E, bottom panel)28,29.

Furthermore, confinement-induced cell-cell collisions play a key role in regulating chemo-

tactic migration: when the influence of crowding-induced collisions is not accounted for,

the simulated fronts do not exhibit the transition to motion withRf ∼ t observed in the

experiments for any of the media tested, nor do they have the same shapes as those seen in

the experiments (Fig. 2.8). Together, these results indicate that the Keller-Segel model can

indeed describe front propagation in porous media at the continuum scale, but only when

the motility parameters are substantially altered in a confinement-dependent manner.
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Figure 2.8: Further simulations of front propagation. (A) Front propagation in rectilinear coordinates. Leading‐edge
positionRf motion of the propagating front over time t for simulations performed in rectilinear coordinates; colors
correspond to those in Fig. 2.6. Stars indicate the crossover from slower to fasterRf ∼ t motion. In this case, we
observe closer agreement to the crossover from slower to fasterRf ∼ t motion observed in the experiments than
simulations performed in cylindrical coordinates. We conjecture that this agreement reflects the influence of boundaries
in the experiment: while the experiments initially have cylindrical symmetry, with the initial 3D‐printed cylinder placed
far from all boundaries, as fronts propagate, they begin to approach the bottom boundary of the imaging chamber.
Specifically, the simulations indicate that the region of nutrient depletion reaches the bottom boundary after∼ 0.5‐1
h; in this case, the symmetry of the fronts is no longer cylindrical in the experiments, but has a rectilinear component.
(B) Without collisions, simulations do not exhibit the transition toRf ∼ t motion observed in the experiments. To assess
the importance of cell‐cell collisions in the model, we perform the same simulations as in Fig. 2.6, but without the
corrections to the motility parameters that incorporate cell‐cell collisions; colors correspond to those in Fig. 2.6. We
fit the chemotactic parameter such that the speed over the last 30 minutes of the simulation matches the experiment,
similar to our method for the other simulations in this chapter, except here we impose no effects of cell‐cell collisions.
The values of chemotactic parameter obtained are 10, 0.9, and 0 µm2/s for the pore sizes in decreasing order, notably
smaller than the values obtained by considering collisions. Moreover, none of the simulations achieve ballistic scaling
in the absence of collisions. We note that for the case of χ0 = 0 µm2/s, propagating fronts still occur—in this case,
however, driven by cellular growth. In particular, nutrient diffusing inward to the leading edge of the population enables
continual growth, driving outward spreading. (C) Profiles of simulated cellular signal, normalized by maximal initial
value, for different radial positions and at different times, for simulations in panel B. Left to right panels show results for
media with ξ= 2.2, 1.7, and 1.2 μm, respectively; colors show different times as indicated in Fig. 2.6. Without cell‐cell
collisions, the simulated front profiles have different shapes from the experiments. In particular, the peak heights are
further reduced, and for the smallest pore size, the peak of the front is not at its leading edge but rather is toward the
back — again highlighting that cell‐cell collisions arising from crowding are necessary for an improved agreement with
the experiments.
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Figure 2.9: Simulations shed light on the physics underlying the observed transition in front dynamics. An example for
the case of intermediate pore‐size media shows the variation of the maximum local chemotactic velocity (blue) and
maximum local diffusive velocity (magenta) over time. At early times, the cell gradient is steep due to the sharp bound‐
ary of cells in the initial geometry of the population. This steep cell gradient drives diffusive flux, but decreases with
time, as shown by the magenta curve. Meanwhile, chemotaxis begins low because (i) consumption must first reduce
nutrient to within sensing levels and (ii) collisions halt the chemotactic response of cells within the dense starting region.
Then, as the population spreads out, the chemotactic flux increases, and at the induction time (dashed line), the two
velocities become comparable and eventually reach a steady state. We note that the diffusive process considered here
is not thermal diffusion—which our previous experiments using non‐motile cells established to be negligible for these
conditions 38—but is active diffusion arising from the random walks performed by motile cells as they “hop” through the
pore space, punctuated by transient “traps”.
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2.2.4 Continuummodel describes long-range sensing by bacterial populations

Why can bacteria coordinate their migration in porous media, while many other microswim-

mers seemingly cannot? These classes of microswimmers rely on short-range interactions to

coordinate their motion183. By contrast, chemotactic migration relies on the coupling be-

tween a population-generated nutrient gradient—which extends over long distances span-

ning hundreds of cell lengths (dashed curves, Fig. 2.6A-C)—and biased cellular motion

along this gradient. Hence, solely through nutrient consumption, different bacteria can

collectively influence and coordinate each other’s motion across long distances—even when

strongly confined. For example, when the separation between two populations is smaller

than the length scale≈ 500 μm over which nutrient is depleted, they “smell” each other,

and fronts only propagate away from, not toward, each other in both simulations and ex-

periments (Fig. 2.10A-B, top row). By contrast, when the separation is much larger, fronts

propagate both toward and away from each other (bottom row). Thus, the framework de-

veloped here provides principles to both predict and direct chemotactic migration.

Figure 2.10: Nutrient depletion directs front propagation over long ranges. (A) Numerical simulations and (B) end‐on (xz)
fluorescence intensity projections for experiments showing front propagation from two initially cylindrical populations
with axes separated by 500 μm (upper row) or 5 mm (lower row). Cells diffuse, but fronts do not propagate between
the closely‐separated cylinders, as shown by the cell‐depleted region between the two at all times; by contrast, fronts
do propagate between the further‐separated cylinders. Scale bars denote 500 μm.
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2.3 Conclusion

Studies of motility are typically performed in bulk liquid—even dating back to the discov-

ery of bacteria, “all alive in a little drop of water”, in 1676. However, many bacteria inhabit

tight and tortuous porous media. Our work demonstrates that chemotactic migration can

be fundamentally different in porous media than in bulk liquid. The paradigm of E. coli

chemotaxis is that individual cells bias their motion primarily by modulating the frequency

of reorientations, possibly with a small additional contribution due to biased reorientation

amplitude. Why cells also employ this second mechanism has remained a puzzle thus far.

Through direct tracking of cells performing chemotactic migration, our experiments re-

veal that this second mechanism can, in fact, be the primary driver of chemotaxis in tight

porous media. Thus, cells employ different mechanisms that enable them to bias their mo-

tion and forage for nutrients in different environments178—motivating future studies of

motility in a variety of complex settings.

Our experiments also provide a direct test of the applicability of the classic Keller-Segel

model in describing chemotactic migration in highly-confining porous media. While this

continuummodel is broadly used for migration in bulk liquid or viscoelastic media28,29,34,45,

whether it provides a suitable description of migration in tight spaces has thus far remained

unknown. Consequently, applications either utilize the Keller-Segel model26,45,180,182 by

treating both motility parametersDb and χ0 as fitting parameters, estimating them using

ad hoc approximations, or instead turn to agent-based models that explicitly simulate the

different cells, which provides tremendous insight but does not provide a continuum de-

scription184. The comparison between our experiments and simulations demonstrates that
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the Keller-Segel model indeed describes chemotactic migration in porous media, but only

when two modifications are incorporated: (i) the cell density-independent motility param-

eters are reduced by several orders of magnitude from values obtained using conventional

liquid assays, reflecting the hindered motion of individual cells in the tight pore space, and

(ii) these motility parameters are further corrected to incorporate the influence of density-

dependent cell-cell collisions, which arise more frequently in a tight pore space. Thus, pore-

scale confinement is a key factor that regulates chemotactic migration, and should not be

overlooked. Indeed, because the framework developed here describes migration over large

length and time scales, we expect it could help more accurately describe the dynamics of

bacteria in processes ranging from infections, drug delivery, agriculture, and bioremedi-

ation. Furthermore, many other active systems—ranging from other prokaryotes, cancer

cells, white blood cells, amoeba, enzymes, chemically-sensitive colloidal microswimmers,

and chemical robots185–191—also exhibit chemotaxis, frequently in complex environments

and following similar rules as E. coli. Thus, the principles established here could be used

more broadly to describe collective migration for diverse forms of active matter.

Our extension of the Keller-Segel model represents a key first step toward describing the

full spatiotemporal features of chemotactic migration at the continuum scale, capturing

the transition from slow to faster motion, as well as the variation of the induction time, the

front speed, the maximal cell density in the front, and the width of the tail of the front with

pore size observed in the experiments. However, we observe slight differences in the dy-

namics of the leading edge and in the shapes of the simulated fronts than those observed

experimentally. These may reflect the mean-field treatment of cell-cell collisions in the

model, which simplifies the details of these collisions and does not treat more sophisticated
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collective dynamics that arise at high local cell densities in bulk liquid192–196. Developing

a more detailed treatment of these dynamics in porous media will be a useful direction

for future work. Furthermore, because our hydrogel porous media are permeable to oxy-

gen and nutrient—similar to many biological gels, as well as many microporous clays and

soils—they enable us to isolate the impact of geometric confinement on cellular migration.

However, many other porous media are composed of solid matrices that are impermeable

to oxygen and nutrient, resulting in more complex spatial profiles of nutrient that may also

alter how cells bias their motion. Moreover, these settings often have fluid flow, which can

further alter oxygen, nutrient, and cellular profiles in interesting ways. Exploring the added

influence of such complexities will be an interesting extension of our work.

2.4 Methods

2.4.1 Imaging and analysis of cell motion

Analysis of cell motion in propagating fronts

After the 3D printed populations form propagating fronts, we image the motion of indi-

vidual cells at the leading edge of the front. We chose to analyze cells at the leading edge of

the front to facilitate comparison with the macroscopic measurements, which also track the

leading edge of the front (as shown in Fig. 2.2). Indeed, studies in bulk liquid29 show that

the local chemotactic drift of individual cells at the leading edge matches well with the drift

velocity of most of the entire front and the overall propagation speed of the entire front.

Thus, chemotaxis of cells at the leading edge of the front is likely to be most representa-

tive of the overall behavior of the front. However, quantifying any systematic variation of
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bacterial dynamics with position in the front would be an interesting direction for future

work.

Other members of our lab acquire successive fluorescence micrographs from a slice

of thickness 79 μm every 51 ms, and track between 171 and 282 cells inside each porous

medium for a minimum of 5 s. Other members of our lab differentiate between hopping

and trapping using an instantaneous speed threshold of 12 μm/s. To quantify possible di-

rectional biases, only the hopping and trapping events longer than three time points (153

ms) are included in the analysis. The angle, θ, between the direction of front propagation

and the hopping direction is measured as θ≡ tan−1 [⃗vf × v⃗h/⃗vf · v⃗h]where v⃗f is the vector

direction of front propagation and v⃗h is the vector connecting the start and end point of a

hop.

Connecting single-cell motility to front propagation

Our single-cell imaging reveals that bacteria in a propagating front exhibit hopping-and-

trapping motility, much like isolated cells in gradient-free porous media. Treating this pro-

cess as a random walk then yields the chemotactic migration velocity v given by Eq. 2.1; θ

represents the hopping angle with respect to the direction of macroscopic front propaga-

tion and thus lhcosθ represents the projected length of a hop.

Specifically, each hop identified using imaging of single cells at the leading edge of the

front yields a measurement of θ, lh(θ), and τh, while each trapping event yields a measure-

ment of τt. We directly calculate p(θ) using all measurements of θ, and we calculate τ̄h and

τ̄t by averaging over all hopping and trapping measurements. We calculate l̄h(θ) by averag-

ing the measured lh over all hops having θwithin a bin spanning (θ − δθ,θ + δθ). Then,
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we calculate v as a discrete sum: v=
∫ 360◦

0◦
p(θ)̄lh(θ)cosθ

τ̄h+τ̄t dθ=
∑

θi
p(θi )̄lh(θi)
τ̄h+τ̄t

sin(θi+δθ)−sin(θi−δθ)
2δθ

where the sum is over all bins (θi − δθ,θi + δθ) and p(θi)≡
∫ θi+δθ
θi−δθ p(θi)dθi represents the

fraction of all hops having orientations within a specified bin. To ensure our choice of bin

width 2δθ has no effect on the results, we vary the bin width from 45 degrees to the smallest

value for which each bin contains at least 20 data points, corresponding to 4, 2.61, and 10

degrees for the media with mean pore size 2.2, 1.7, and 1.2 μm, respectively. The velocity

results for different bin widths are shown in Fig. 2.4. The calculated velocity overshoots

the actual front velocity due to limitations in tracking very long trap times, thus artificially

lowering the average trap time in the discrete sum and raising the velocity. However, these

plots demonstrate that the order of the three conditions tested—uniform p(θ), uniform

l̄h, or both p(θ) and l̄h being θ-dependent—is consistent across all bin widths. The varia-

tion in velocity for different bin widths is reported in the standard deviation shown in the

bar charts of Fig. 2.3. Replacing p(θ) by a uniform distribution decreases v precipitously,

confirming that biasing hopping orientation—presumably by modulating the number of

flagella that unbundle during trapping, and thus the amplitude of cell body reorientation,

as has been analyzed previously34,167–169—is the primary driver of chemotactic migration in

porous media. The results thus obtained are not sensitive to the presence of hops spanning

the boundary of the field of view; removing hops beginning in a buffer region l̄h wide on

all boundaries, yet keeping hops that end in this region, still yields similar results to those

presented here. A similar analysis performed for cells at varying positions throughout the

front will be an interesting direction for future work; our analysis only focuses on cells at

the leading edge of the front to facilitate comparison with the macroscopic tracking of the

leading edge shown in Fig. 2.2. Furthermore, as suggested by others for experiments in bulk
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media29, the local chemotactic drift of individual cells near the leading edge matches well

with the drift velocity of most of the entire front and indeed, the overall speed of the entire

front.

2.4.2 Formulation of continuummodel

To mathematically model front propagation, we build on previous work26–29,34–37,197–199 to

describe the evolution of the nutrient concentration c(r, t) and number density of bacteria

b(r, t) via Eqs. 2.2-2.3. The continuummodel, which is conventionally applied to chemo-

tactic migration in bulk liquid or viscoelastic media, relies on two standard quantities to

describe the motion of the population over large length and time scales: the diffusivity,

which characterizes undirected spreading, and the chemotactic coefficient, which char-

acterizes the ability of cells to bias their motion in response to a sensed nutrient gradient.

Our single-cell tracking in the absence of a nutrient gradient provides a direct determina-

tion of the diffusivity, which we then use directly as an input to the model. Our single-cell

tracking at the leading edge of the chemotactic front also demonstrates the importance of

cellular reorientation bias in driving chemotaxis; however, the single-cell data do not yield a

direct determination of the chemotactic coefficient, because this quantity also depends on

properties of cellular chemoreceptors and signal transduction, as well as the exact nutrient

conditions, all of which are unknown. Therefore, as is conventionally done, we determine

this parameter by directly fitting the long-time speed predicted by the continuummodel

to the experimentally-determined front speed. The continuummodel does not explicitly

incorporate the exact mechanism by which cells bias their motion; it simply requires a bias

in cellular motion, as confirmed by the single-cell tracking.
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Choice of c(r, t)

The medium contains 10 mM L-serine as the most abundant nutrient source and attrac-

tant200. Moreover, E. coli consume L-serine first in mixed media31 and are known to re-

spond most strongly to serine as a chemoattractant compared to other components of the

media we use33,201–204 as well as compared to oxygen203. Thus, unlike other work exploring

mixtures of different nutrients and attractants28, in our experiments L-serine acts as the

primary nutrient source and attractant. When the primary nutrient and primary attractant

are different chemical species, metabolically active cells continue to grow and divide in the

wake of the propagating front28—unlike in our experiments, for which the inner region of

the population remains fixed and eventually loses fluorescence, indicating that it is under

nutrient-limited conditions199. We therefore focus on L-serine in the continuummodel,

represented by the concentration field c(r, t).

We note that while L-serine can exhibit toxicity at high concentrations205, consumption

by the cells reduces the local nutrient levels by over one to two orders of magnitude within

the propagating fronts themselves (indicated in Fig. 2.6A-C); thus, we do not expect or see

any indication of possible toxicity of L-serine in the experiments.

Our numerical simulations focus on the nutrient concentration c(r, t); however, incor-

porating oxygen concentration as an additional field variable, initially at 250 μM through-

out206, that diffuses207 with diffusivity 2500 μm2/s and is consumed by the bacteria at a

maximal rate of 1.2× 10−12 mM(cell/mL)−1s−1 and with a characteristic Michaelis-Menten

level29 of 1 μM reveals that the oxygen profile is remarkably similar to that of the nutrient

(Movie S15 in the online version of this work163) : oxygen becomes depleted in the same

region as the nutrient, consistent with the idea that the front contains aerobically metaboli-
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cally active cells while behind the front cells are deprived of both nutrient and oxygen.

We note that the nutrient levels of our liquid medium are nearly two orders of magni-

tude larger than the levels under which E. coli excrete appreciable amounts of their own

chemoattractant208. Moreover, chemoattractant excretion results in the collapse of cells

into pointlike aggregates208–210, which are not observed in our experiments. Thus, under

the nutrient-rich conditions explored in our work, it is unlikely that bacteria in the front

excrete appreciable levels of their own chemoattractant.

For all of these reasons, our model incorporates a single nutrient and attractant through

the field c(r, t) for simplicity.

Nutrient diffusion

Molecules of L-serine (size∼ 1 nm) are nearly two orders of magnitude smaller than the

hydrogel particle mesh size∼ 40-100 nm. Moreover, the L-serine isoelectric point is 5.7,

lower than our pH of 7.4, and the polymers making up the hydrogel are negatively charged

under our experimental conditions; we therefore do not expect that attractive electrostatic

interactions or complexation arise. Thus, we do not expect that steric or electrostatic in-

teractions with the hydrogel matrix impede L-serine diffusion, and we take the nutrient

diffusivityDc to be equal to its previously measured value in pure liquid, 800 μm2/s.

Nutrient consumption

The total rate of nutrient consumption is given by bκg(c), where κ is the maximum con-

sumption rate per cell and g(c) = c/(c + cchar) describes the influence of nutrient avail-

ability throughMichaelis-Menten kinetics i.e. it quantifies the reduction in consumption
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rate when nutrient is sparse as established previously28,45,211–213, with cchar = 1 μM as deter-

mined previously214. We use a value of κ= 1.6 × 10−11 mM(cell/mL)−1s−1 comparable to

values determined previously45 that yields values of vfr that match the experimental values

and yields front peak heights that match experimental values of the cellular signal. These

are the values of cchar and κ used in Chapters 2 and 4, although in Chapter 3 we present an

improved method of extracting these values from the experimental profile of a traveling

front directly (§3.2.6) that yields better agreement in profile width, in particular.

Cellular diffusivity

Porous confinement alters both the undirected and directed components of cell motion.

Our previous work38 showed that isolated cells move in an undirected manner via hopping-

and-trapping motility, with a cellular diffusivityDb that characterizes motion over time

scales much larger than τt ∼ 1-10 s. To determineDb for each porous medium, we use ex-

perimental measurements of the hopping lengths lh and trapping durations τt of isolated

cells in gradient-free conditions in each porous medium, and calculateDb ≈ 0.3 × l̄2h/3τ̄t,

where the factor of 0.3 is an empirical correction determined previously38. We finally ob-

tainDb = 2.32, 0.93, and 0.42 μm2/s for porous media with ξ= 2.2, 1.7, and 1.2 μm, re-

spectively.

Cellular chemotaxis

We employ an advective term−∇ · (bvc) to describe biased motion along a chemoattrac-

tant gradient, where the chemotactic velocity vc ≡ χ0∇f(c) quantifies the abilities of in-

dividual cells to logarithmically respond to the local nutrient gradient. Specifically, the
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function f(c) = log [(1+ c/c−) / (1+ c/c+)] established previously28 quantifies the ability

of the cells to sense nutrient levels215–221, where c− = 1 μM and c+ = 30 μM are the upper

and lower bounds of logarithmic sensing, and the chemotactic coefficient χ0 quantifies the

ability of bacteria to bias motion in response to the sensed nutrient gradient. Although

heterogeneity in χ0 may be present within the population29, we focus our analysis on the

effect of pore size by assuming all individual bacteria have identical chemotactic capabil-

ities. Since our experiments demonstrate that the ability to bias motion is dependent on

pore-scale confinement, we use χ0 as the pore size-dependent fitting parameter. We vary

χ0 to match the numerically-simulated long-time front speed with that of the experiment.

We finally obtain χ0 = 145, 9, and 5 μm2/s for porous media with ξ= 2.2, 1.7, and 1.2 μm,

respectively.

Cell growth

To obtain the cell doubling time τ2, we measure the first division time for isolated cells

within a gradient-free small-pore medium that inhibits cellular motion. Specifically, we

measure the duration between the first cell division and the second cell division for 13 cells

to find the average cell division time to be τ2 = 60 minutes. The rate at which cells grow

is then given by bγg(c), where γ= ln(2)/τ2 is the maximal doubling rate per cell and g(c)

again describes describes the influence of nutrient availability throughMichaelis-Menten

kinetics i.e. it quantifies the reduction in growth rate when nutrient is sparse. Because c and

b are coupled in our model, we do not require an additional “carrying capacity” of the pop-

ulation to be included, as is often done28,45: we track nutrient deprivation directly through

the radially-symmetric nutrient field c(r, t).
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Loss of cellular signal

We experimentally observe that while the periphery of a 3D-printed population forms a

propagating front, the inner region remains fixed and eventually loses fluorescence, indi-

cating that it is under nutrient-limited conditions. Specifically, the fluorescence intensity

of this fixed inner population remains constant for τdelay = 2 h, and then exponentially

decreases with a decay time scale τstarve = 29.7 min (Fig. S2 in the online version of this

work163). We incorporate this feature in our numerical simulations to determine the cel-

lular signal, the analog of measured fluorescence intensity in the numerical simulations.

Specifically, wherever c(r ′, t ′) drops below a threshold value, for times t > t ′ + τdelay, we

multiply the cellular density b(r ′, t) by e−(t−t ′)/τstarve , where t ′ is the time at which the posi-

tion r ′ became nutrient-depleted. This calculation yields the cellular signal plotted in Figs.

2.6–2.10, for which delayed fluorescence loss yields the ziggurat-like shape of the propagat-

ing front.

2.4.3 Implementation of numerical simulations

To numerically solve the continuummodel, we use an Adams-Bashforth-Moulton predic-

tor corrector method where the order of the predictor and corrector are 3 and 2, respec-

tively. Since the predictor corrector method requires past time points to inform future

steps, the starting time points must be found with another method; we choose the Shanks

starter of order 6 as described previously222,223. For the first and second derivatives in space,

we use finite difference equations with central difference forms. Time steps of the simula-

tions are 0.01 s and spatial resolution is 10 μm. Because the experimental chambers are 3.5

cm in diameter, we use a radial distance of 1.75× 104 μm for the size of the entire simulated
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system.

To match the symmetry of a single 3D printed cylinder, we use a one-dimensional ax-

isymmetric coordinate system with variation in the radial coordinate. To simulate two

3D printed lines (Fig. 2.10), we instead use a one-dimensional Cartesian coordinate sys-

tem (“slab” geometry) that avoids the unnecessary use of two spatial coordinates while still

demonstrating the key features of the experiment. No flux boundary conditions are used

for symmetry in the center and at the walls of the simulated region for both field variables b

and c.

The initial cylindrical distribution of cells 3D-printed in the experiments has a diameter

of 100 ± 10 μm; so, in the numerical simulations, we use a Gaussian with a 100 μm full

width at half maximum for the initial bacteria distribution b(r, t = 0), with a peak value

that matches the 3D-printed cell density in the experiments, 0.95 × 1012 cells/mL. The

initial condition of nutrient is 10 mM everywhere, characteristic of the liquid media used

in the experiments. The initial nutrient concentration is likely lower within the population

initially due to nutrient consumption during the 3D printing process; however, we find

negligible effects of this initial condition on the characteristics of front propagation.

To assess convergence of the numerical solutions, we perform simulations with varying

spatial and temporal resolution. Even for the case of the largest pore size medium, which

has the largest value of χ0/Db and thus requires the finest resolution, we find the long-time

front speed obtained with spatial resolution of 10 μm is within∼ 14% that obtained with a

resolution of 5 μm—in close agreement—and the bacterial profiles b(r, t) have similar char-

acteristics. For the intermediate pore size medium, we find that the long-time front speed

obtained with spatial resolution of 10 μm and temporal resolution of 0.01 s is within∼

46



5% the value obtained with spatial resolution of 5 μm and temporal resolution of 0.001 s,

and the bacterial profiles b(r, t) have similar characteristics (Fig. 2.11), confirming that the

resolution is sufficiently fine so that our results are not sensitive to the choice of resolution.

Figure 2.11: Choice of discretization in numerical simulations does not influence results. (Left panel) Long‐time front
speed for simulations representing chemotactic migration in porous media with ξ= 2.2, 1.7, and 1.2 μm (blue, green,
magenta, respectively). We use two values of temporal discretization dt for each value of spatial discretization dr to
ensure a sufficient time resolution was chosen; top and bottom rows show dr= 5 and 10 μm and dt= 0.001 and
0.01 s, respectively. Simulations showing normalized cell signal (blue) and normalized nutrient concentration (red) for
ξ= 2.2 and 1.7 μm (middle and right panels, respectively) show minimal variation between choices of discretization
indicated.

2.4.4 Comparison between simulations and experiments

The goal of our modeling is to identify the essential physics needed to extend the classic

Keller-Segel model to the case of complex porous media, with minimal alteration to the

input parameters. We therefore do not expect perfect quantitative agreement between the

experiments and simulations. Instead, we hope that our work will motivate future exten-

sions of the model that provide an even better match to the experiments, as further detailed

below.

Overall, we find good agreement between the simulations and experiments. Specifically,

in all cases we observe a comparable crossover from slower to faster motion, with compa-

rable induction times, front speeds, and front peak heights, indicating that our simplified
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extension of the Keller-Segel model provides an essential first step toward capturing the dy-

namics of chemotactic migration in porous media at the continuum scale. However, we do

observe discrepancies between the model and the experiments. These discrepancies likely

reflect (i) the influence of boundaries in the experiments, (ii) the simplified treatment of

cell-cell collisions, (iii) differences in the values of the exact parameters input to the simula-

tions, as detailed further below.

(i) The influence of boundaries in the experiments. While the experiments initially have

cylindrical symmetry, with the initial 3D-printed cylinder placed far from all boundaries,

as fronts propagate, they begin to approach the bottom boundary of the imaging chamber.

Specifically, the simulations indicate that the region of nutrient depletion reaches the bot-

tom boundary after∼ 0.5-1 h for experiments in the largest pore size media; in this case,

the symmetry of the fronts is no longer cylindrical in the experiments, but has a rectilin-

ear component. We conjecture that this feature gives rise to the deviation in the long-time

scaling in the simulations performed for the largest pore size media, indicated by the blue

squares in Fig. 2.6D. To test this conjecture, we have repeated the simulations, but in rec-

tilinear coordinates; the leading-edge position of the propagating front over time for sim-

ulations performed in rectilinear coordinates is shown in the top panel of Fig. 2.8; colors

correspond to those in Fig. 2.6. Stars indicate the crossover from slower to faster motion.

In this case, we observe closer agreement to the scalingRf ∼ t observed in the experiments

than simulations performed in cylindrical coordinates, confirming our conjecture.

(ii) The simplified treatment of cell-cell collisions. Because confinement increases the

local density of cells in the pore space—increasing the propensity of neighboring cells to

collide as they hop through the pore space—in the model, we explicitly account for possi-
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ble cell-cell collisions that truncate both motility parameters at sufficiently large values of

the cell density. We do this using a mean-field treatment, in which both motility param-

eters are truncated by a density-dependent geometric correction factor. A key finding of

our work is that incorporating cell-cell collisions is essential in the model; neglecting them

entirely, as is conventionally done, yields fronts that do not achieve the measuredRf ∼ t

scaling for any of the porous media tested and have shapes that differ from those seen in the

experiments (as shown in Fig. 2.8B–C). However, this mean-field treatment simplifies the

details of these collisions, assuming that they simply truncate hops and do not alter trap-

ping, and also does not treat more sophisticated collective dynamics that arise at high local

cell densities in bulk liquid, such as swarming. Developing a more detailed treatment of

these dynamics in porous media will be a useful direction for future work.

(iii) Differences in the values of the exact parameters input to the simulations. While our

simulations use values for all input parameters estimated from our and others’ direct mea-

surements, the values used may not exactly match those corresponding to the experiments,

given the uncertainty inherent in determining these parameters (e.g., the maximal nutri-

ent consumption rate, the characteristic nutrient level in the Michaelis-Menten function).

Thus, the simulations may not perfectly reproduce the experiments. For simplicity, we fix

the values of these parameters using previous measurements and focus instead on the vari-

ation of the motility parameters with pore size. We anticipate that our findings will help to

motivate future work that better constrains the values of the input parameters to the Keller-

Segel model.
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3
Influence of confinement on the spreading

of bacterial populations

3.1 Introduction

As detailed in Chapter 2, we developed an extended version of the classic Keller-Segel model

to explain our experimental observations of chemotactic migration through a porous medium.
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In this Chapter, we explore this model in greater depth. The novelty of the model is in de-

scribing bacterial spreading via both motility and growth, and explicitly incorporating the

influence of confinement on spreading by considering both cell-solid and cell-cell colli-

sions. We identify key dimensionless parameters emerging from this extended model that

describe bacterial spreading. Furthermore, by numerically solving the model, we show how

confinement fundamentally alters the dynamics and morphology of spreading bacterial

populations. In particular, with increasing confinement, we find that cell-cell collisions

increasingly hinder the initial formation and the long-time propagation speed of chemo-

tactic pulses. (In this chapter, we use the word “pulse” to distinguish peaked profiles from

those without a clear peak.) Moreover, also with increasing confinement, growth plays an

increasingly dominant role in driving population spreading compared to cellular motility—

eventually leading to a transition from chemotactic spreading to growth-driven spreading

via a slower, jammed front. Thus, our work provides a foundation for future investigations

of the influence of confinement, and yields quantitative principles that could guide the pre-

diction and control of bacterial spreading in crowded and complex environments.

This chapter has been adapted from “Influence of confinement on the spreading of bacterial popu-
lations”, byDaniel B. Amchin, Jenna A. Ott, Tapomoy Bhattacharjee, and Sujit S. Datta, in press PLoS
Computational Biology, (2022). Author Contributions: D.B.A. and S.S.D. developed the theory, assisted
by discussions with T.B.; D.B.A., J.A.O., and S.S.D. designed the numerical simulations; D.B.A. performed
all numerical simulations with assistance from J.A.O.; D.B.A. and S.S.D. analyzed the data; S.S.D. designed
and supervised the overall project. D.B.A. and S.S.D. discussed the results and implications and wrote the
manuscript.
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3.2 Methods

3.2.1 Classic Keller-Segel model, also incorporating growth

Two forms of the Keller-Segel model have been explored in the prior literature to describe

two distinct biophysical processes: one describes cellular aggregation and pattern formation

in response to chemoattractant produced by the cells themselves208,209,224, while the other

describes cellular spreading in response to an exogenous chemoattractant that is not pro-

duced, but just consumed, by the cells26–29,35–37. Here, we focus on the latter case. Before

considering confinement, we first describe how chemotactic spreading is typically mod-

eled using this form of the classic one-dimensional Keller–Segel model—which does not

incorporate the influences of growth and confinement, but can successfully capture the key

features of experiments on dilute populations of bacteria in bulk liquid26–29,34–37,45. We also

introduce growth into this model.

To directly connect the model to many experiments29,32,45,163, we consider a sole nutrient

that also acts as the chemoattractant—as is conventionally done26,27,32—represented by the

continuum variable c(x, t), where x is the position coordinate and t is time. The number

density of bacteria, in turn, is given by the continuum variable b(x, t). Furthermore, given

the experimental conditions, we assume that the cells do not excrete their own chemoat-

tractant or other diffusible signals, as is sometimes the case in low-nutrient conditions and

for specific strains. Recent extensions of this model have also considered the case in which

nutrient and attractant are separate chemical species, which leads to fundamentally differ-

ent behavior that would be interesting to explore using our framework in future work28,225.

As the nutrient diffuses through space with thermal diffusivityDc, it is consumed by
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the cells at a rate bκg(c); here, κ is the maximum consumption rate per cell and the Monod

function g(c)≡ c/(c+ cchar), with the characteristic concentration cchar, quantifies the re-

duction in consumption rate when nutrient is sparse28,45,211–214,226. Therefore, the nutrient

dynamics are given by

∂c
∂t

= Dc∇2c − bκg(c). (3.1)

The bacterial dynamics have two contributions: a motility-driven flux J⃗m and cellular

proliferation. The flux arises from the combination of the undirected spreading of cells,

a diffusive process with an active diffusivityDb0
23, and directed chemotaxis with a drift

velocity v⃗c ≡ χ0∇f(c) that quantifies the ability of the bacteria to logarithmically respond

to the local nutrient gradient27,35,36. The well-established function f(c)≡ log[(1+ c/c−)/

(1+ c/c+)] quantifies the ability of the cells to sense nutrient with characteristic bounds c−

and c+ 28–31,215–221, while the chemotactic coefficient χ0 quantifies the ability of the cells to

bias their motion in response to a sensed nutrient gradient. Therefore, the motility-driven

flux J⃗m =−Db0∇b+ bvc. Proliferation, on the other hand, is given by bγg(c), where γ is the

maximal growth rate per cell and g(c) reflects the reduction in growth rate when nutrient is

sparse—circumventing the need to introduce an ad hoc “carrying capacity” of a logistically-

growing population, as is sometimes done. Therefore, the bacterial dynamics are given by

∂b
∂t

= Db0∇2b−∇ · (bvc)︸ ︷︷ ︸
−∇·⃗Jm

+ bγg(c). (3.2)

Together, Equations 3.1–3.2 represent the classic Keller-Segel model that describes the
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coupled dynamics of nutrient and bacteria, also including the added influence of cellular

growth. In particular, they successfully capture the key features of chemotactic spreading

in unconfined liquid, in which cells collectively generate a local gradient of nutrient that

they in turn bias their motion along—leading to the formation of a coherent pulse of bac-

teria that continually propagates, sustained by its continued consumption of the surround-

ing attractant29,32–34.

3.2.2 Characteristic dimensionless parameters

Non-dimensionalizing Equations 3.1–3.2 yields useful dimensionless parameters for char-

acterizing population spreading. We rescale {c, b, t, x} by the characteristic quantities

{c∞, b0, tc,0, ζ}, where c∞ is the initial nutrient concentration taken to be constant every-

where, b0 is the maximal initial cell density, tc,0 ≡ c∞/ (b0κ) is a characteristic time scale of

nutrient consumption, and ζ0 ≡
√

Db0tc,0 is the characteristic extent of cellular diffusion

over the duration tc,0. This process yields the non-dimensional equations

∂ c̃
∂ t̃

= δ0∇̃2c̃ − b̃g̃ (3.3)

∂b̃
∂ t̃

= ∇̃2b̃ − α0∇̃ · (b̃∇̃f̃) + β0b̃g̃, (3.4)

where the tildes indicate non-dimensionalized variables. Three dimensionless parameters

emerge:

• The diffusion parameter δ0 ≡Dc/Db0 compares the thermal diffusion of nutrient
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to the active diffusion of bacteria. When δ0 ≪ 1, variations in nutrient are localized

to the leading edge of the bacterial population, whereas when δ0 ≫ 1, nutrient levels

vary over large spatial extents.

• The directedness parameter α0 ≡ χ0/Db0 compares the influence of chemotaxis to

active diffusion in driving cellular spreading. When α0 ≪ 1, diffusion dominates

and cells do not appreciably direct their motion in response to a nutrient gradient,

whereas when α0 ≫ 1, motile cells strongly direct their motion in response to a gradi-

ent.

• The yield parameter β0 ≡ γ/(b0κ/c∞) compares the rates of cell growth and nutrient

consumption, γ and t−1
c,0 , respectively. It therefore quantifies the yield of new cells

produced as a population consumes nutrient. When β0 ≪ 1, nutrient consumption

is much faster than proliferation, whereas when β0 ≫ 1, many new cells are produced

in the time required to consume the available nutrient.

The quantity Λ0 ≡ α0/(β0δ0) = γ−1 · χ0/(Dctc,0) therefore characterizes the interplay be-

tween chemotatic and growth-driven spreading of bacterial populations. In particular,[
χ0/(Dctc,0)

]−1 is a characteristic time scale needed to spread via chemotaxis over the nu-

trient diffusion length
√
Dctc,0, while γ−1 is the time scale over which cells grow. Previ-

ous studies in bulk liquid focused solely on chemotactic spreading, which is characterized

by the limit Λ0 ≫ 127,29,34,36,37. Other studies of non-chemotactic cells focused solely on

growth-driven spreading, characterized by the opposite limit Λ0 = 0227–232. However, ex-

periments performed in semi-solid agar45 as well as in defined packings of particles163 indi-

cate that confinement in such crowded media introduces new cell-cell and cell-medium in-
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teractions that are not incorporated in the classic Keller-Segel model. Hence, in this paper,

we describe a first step toward incorporating these complexities, which not only tune Λ0

over a broad range, but also fundamentally alter spreading dynamics—as described here-

after.

3.2.3 Keller-Segel model incorporating confinement

As a model system, we consider bacterial populations confined in media with close-packed,

rigid, and immovable obstacles surrounding a free space that is sufficiently large for cells to

move through. This form of confinement alters bacterial spreading dynamics in three ways:

(i) Collisions with the surroundings impede cellular spreading38,39,233,234, reducing the

transport parametersDb0 and χ0, as quantified in recent experiments in 3D porous

media38,163 as well as in semi-solid agar45;

(ii) The presence of surrounding obstacles reduces the free space available to cells to

move through, increasing cellular crowding and promoting cell-cell collisions that

further truncate the motility parameters, observed experimentally using in situmi-

croscopy163;

(iii) When the number density of cells is sufficiently high, this reduction in free space

causes the cells to be jammed; hence, they are able to spread only through prolif-

eration, which pushes cells outward, as quantified in experiments using single cell

visualization235,236.

Notably, (ii)-(iii) are absent from the classic Keller-Segel model, which treats cells as non-

contacting, and require modifications beyond simply changing the transport parameters
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Db0 and χ0.

Figure 3.1: Summary of the cell density‐dependent crowding correction μcrowd, which we use in the model to incorpo‐
rate the influence of confinement on cell‐cell collisions. In particular, the cellular transport parameters are multiplied
by μcrowd, this case shown for the prototypical case of intermediate confinement. (Left) At low densities, spreading of
cells (green) is impeded only by collisions with surrounding solid obstacles (grey), not with neighboring cells, so μcrowd
= 1. This impeded spreading is quantified by the transport parametersDb0 and χ0, whose values are regulated by
the characteristic chord length l̄c characterizing the amount of free space between obstacles. (Middle) When the local
density of cells is so large that the characteristic separation between neighboring cells l̄cell is less than the characteristic
chord length l̄c, cell‐cell collisions further truncate the transport parameters. This effect is quantified by μcrowd < 1.
(Right) At the maximal density b= bjammed, the cells are jammed and have no free space to move. Therefore, μcrowd
= 0, and the population spreads solely through growth and division of cells. Note that our definition of the number
density of bacteria b is as the number of cells per unit total volume of space, which includes the volume of surrounding
obstacles.

(i) Impeded spreading of isolated cells. Bacterial spreading is typically modeled as a ran-

dom walk with directed steps of characteristic length l and characteristic duration τ that

are punctuated by reorientation events23. Consequently, both transport parametersDb0,

which describes the unbiased component of the random walk, and χ0, which describes
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the biased component, are set by∼ l2/τ. In bulk liquid, the directed steps are known as

runs, which extend along straight-line paths l∼ 50 μm long, punctuated by rapid tum-

bles. In tight confinement, however, a cell collides with an obstacle and becomes transiently

trapped well before it completes such a run. Therefore, as established in recent experi-

ments38,39, runs are truncated by collisions with surrounding obstacles, and the directed

steps of the random walk are instead set by the geometry of the available free space; thus,

for isolated cells, l∼ l̄c, the mean length of straight line chords237 that fit in the free space39.

Moreover, because the trapping process induced by collisions with obstacles occurs over

a duration τt that is longer than that of the truncated runs, τ≈ τt. As a result, for cells

confined in tight media, both transport parametersDb0 and χ0 are instead∝ l̄2c/τt—and

because increasing confinement both decreases l̄c and increases τt 39, it concomitantly de-

creases bothDb0 and χ0, as confirmed experimentally163. Within the context of prior work

investigating diffusion in porous media238, we note that while the volume fraction of free

space (porosity) φ is known to influence diffusion, it alone does not determine the diffu-

sion coefficient because the geometry of the free space plays a key role as well. Thus, in our

model, φ influences cellular transport (active diffusion and chemotaxis) indirectly through

its effect on the chord length l̄c, which characterizes the length scale associated with straight

paths that fit within the free space—and therefore determines the length scale over which

cells can move in a directed manner.

(ii) Crowding-induced collisions between cells. Confinement also reduces the free space

available to cells. Our definition of the number density of bacteria b quantifies the number

of cells per unit total volume of space, which includes the volume of surrounding obstacles;

hence, the local density of cells is given by b/φ, where φ < 1 is the volume fraction of free
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space that is reduced by the presence of obstacles. This increase in the local density of cells

increases the propensity of neighboring cells to collide as they move, further truncating l.

Single-cell imaging in a porous medium confirms this expectation163: when the available

free space is so tight that multiple cells cannot fit side-by-side, cells are necessarily restricted

to end-on collisions between each other as they move, also inducing reorientations akin to

those induced by collisions with surrounding obstacles. Therefore, as a first step toward

incorporating this behavior into the model described in §3.2.1, we adopt a mean-field treat-

ment of cell-cell interactions in which cells truncate each other’s directed steps in a density

dependent manner, inducing transient trapping events again of duration τt akin to colli-

sions with obstacles.

In particular, wherever the local density b/φ is larger than a threshold value b∗/φ such

that the mean separation between the surfaces of neighboring cells, l̄cell, decreases below the

mean chord length l̄c, we expect that cell-cell collisions truncate l from l̄c to l̄cell (schema-

tized in the middle inset of Fig. 3.1). Because the diffusion and chemotactic coefficients

both vary as∝ l2, we therefore multiply both density-independent parametersDb0 and

χ0 that characterize isolated cells by the density-dependent correction factor μcrowd(b) =(̄
lcell/̄lc

)2, where the cell separation is approximated as the mean value l̄cell ≡ (3φ/4πb)1/3−

d; here, d≈ 1 μm is the characteristic size of a cell, and therefore b∗ ≡ 3φ/[4π(̄lc + d)3]. As

b increases further, it eventually reaches the jamming density bjammed ≡ 3φ/(4πd3) at which

cells cannot move at all, and l̄cell = 0; in this case, both transport parameters are zero, and

the bacterial population can only spread via growth. Therefore, in Eq. 3.2,Db0 and χ0 are
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replaced by the corrected values

Db(b) = Db0 × μcrowd(b) (3.5)

χ(b) = χ0 × μcrowd(b) (3.6)

where the crowding correction factor μcrowd(b) is piecewise defined as

μcrowd(b) =



1 when b ≤ b∗[
( 3φ
4πb)

1/3
−d

l̄c

]2
when b∗ < b < bjammed

0 when b ≥ bjammed

(3.7)

as shown in Fig. 3.1; the limits b∗ and bjammed are indicated by the left and right vertical

dashed lines, respectively. This way of correcting the diffusive term in Eq. 3.2 represents

a simplifying approximation; strictly speaking, one cannot simply commute the divergence

operator with the diffusion coefficient, given thatDb depends on b(x, t) via the crowding

correction factor. However, as we describe further in §3.2.4, this simplification does not

appreciably influence our results and conclusions. We term cases with low cell density (b

< b∗) the obstacle collisions limited regime described in (i) above; cases with intermediate

cell density (b∗ ≤ b< bjammed) the cell collisions limited regime; and cases with the highest

possible density of cells (b= bjammed) the jammed growth spreading regime described in (iii)

below. Because we take the cells and surrounding obstacles to be incompressible, b cannot
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exceed bjammed.

(iii) Jammed growth spreading. When they are jammed, cells form a contact network that

holds them in place and prevents motion by active propulsion. However, these cells can

continue to proliferate if supplied with nutrient; based on the experiments in163, we assume

that the maximal growth rate γ is not affected by confinement. Thus, in this case, their high

body stiffness enables growing cells to push outward on their neighbors; the bacterial pop-

ulation can then be treated as an incompressible “fluid” in which the added stress due to

cellular growth relaxes rapidly via spreading, as is conventionally done in models of grow-

ing immotile populations227,239–241 and supported by experiments235,236. Because we treat

the obstacles comprising the medium as being rigid and immovable, and the interstitial free

space large enough for cells to move through without being deformed, this process leads

to jammed growth spreading. We incorporate this behavior into the Keller-Segel model

following previous work modeling the growth of immotile biofilms228. In particular, at

each time step δ0t, we first identify the smallest xi at which b(xi, t + δt) exceeds bjammed;

we then set b(xi, t + δt) = bjammed and instead relocate the newly-formed cells δb(xi)≡

b(xi, t + δt) − bjammed to the nearest location xj > xi at which b(xj, t)< bjammed. We then

repeat this process for all successive positions x> xi such that at time t + δt, the upper limit

on cell density bjammed is globally satisfied.

3.2.4 Details for simplification of diffusion term

Strictly speaking, one cannot simply commute the divergence operator with the diffusion

and chemotactic coefficients, given that they depend on b(x, t) via the crowding correction

factor. Instead, the density-dependent diffusion and chemotactic coefficients given in Eq.
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3.5–3.6,Db =Db0 × μcrowd(b) and χ= χ0 × μcrowd(b), respectively, must be incorporated

into the flux J⃗m =−Db∇b + bχ∇f(c) before taking the divergence to obtain Eq. 3.2. This

procedure would lead to diffusive and chemotactic terms∇ · (Db∇b) and−∇ · (χb∇f(c))

in Eq. 3.2, respectively. While we do indeed use the latter form for the chemotactic term,

we use a simpler approximate form of the diffusive term,Db∇ · ∇b=Db∇2b, moving for-

ward in this chapter. In fact, utilizing the mathematically-correct form of the diffusive term

in our model leads to nearly-identical results as with the simplified approximate form, as

we show below, and thus does not change the key results and conclusions in this chapter.

Hence, we choose to use the simplified approximate form in this chapter because it pro-

vides a straightforward way of incorporating the influence of confinement and crowding in

modulating the diffusion coefficient.

In particular, the diffusive term can be expanded as:

∇ · (Db∇b) = ∇Db · ∇b+Db∇2b = Db0∇μcrowd · ∇b︸ ︷︷ ︸
(i)

+Db∇2b︸ ︷︷ ︸
(ii)

, (3.8)

where term (ii) represents our simplified approximate form and (i) represents an addi-

tional correction required to make this approximation exact. In our one-dimensional coor-

dinate (x) system, the correction term (i) can be written asDb0
∂μcrowd
∂x

∂b
∂x =Db0

∂μcrowd
∂b

(
∂b
∂x

)2.
This expression is non-zero only for b∗ < b< bjammed, where the constants b∗ ≡ 3φ/[4π(̄lc + d)3]

and bjammed ≡ 3φ/ (4πd3), since for values of b outside this range, μcrowd(b) is a constant

and thus ∂μcrowd/∂b= 0. And within this range, ∂μcrowd/∂b decreases monotonically from

its value evaluated at b= b∗ to zero at b= bjammed, as can be seen from Fig. 3.1—precisely

the same range in which ∂b/∂x≈ 0, as can be seen from the density profiles in Figs. 3.5,
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3.7, 3.9. Thus, we expect that the correction term (i)≈ 0, and the diffusive term can be

reasonably approximated using the simpler expressionDb∇2b. Indeed, consistent with this

expectation, performing all of our numerical simulations using the full expression Eq. 3.8

yields population spreading dynamics that are nearly identical to those presented in this

chapter, as indicated by Fig. 3.2.

Figure 3.2: Simulations corresponding to Fig. 3.9A‐C, but using the full diffusive term (Eq. 3.8) in our model; we observe
nearly identical results, supporting our simplifying choice.

Beginning with density dependent diffusivity in the flux term the governing equation for
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cell density is

∂b
∂t

= −∇ ·
(
−Db0μcrowd(b)∇b+ (bvc)

)
+ bγg(c). (3.9)

Applying the product rule to the divergence term we obtain

∂b
∂t

= Db0∇ ·
(
μcrowd(b)

)
∇b−Db0μcrowd(b)∇ · (∇b)−∇ ·

(
bvc

)
+ bγg(c). (3.10)

Applying the definition of divergence and gradient in rectilinear coordinates in one di-

mension x and applying the chain rule to ∂μcrowd(b)
∂x =

∂μcrowd(b)
∂b

∂b
∂x we get

∂b
∂t

= Db0
∂μcrowd(b)

∂b

(
∂b
∂x

)2

+Db0μcrowd(b)
∂2b
∂x2

− ∂(bvc)
∂x

+ bγg(c). (3.11)

The first term,Db0
∂μcrowd(b)

∂b

(
∂b
∂x

)2, has been ignored in our model, a consequence of ap-

plying cell density dependence later. To evaluate if this simplification to the model influ-

ences the results of our simulations, we perform the same simulations as in Fig. 3.9A-C

now including this term shown in Fig. 3.2. Comparing the two figures, the results are

nearly indistinguishable.

3.2.5 Implementation of numerical simulations

To explore the influence of confinement, we perform numerical simulations of Eqs. 3.1–

3.2, modified as described in §3.2.3. Motivated by its simplicity and amenability to the
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addition of our discrete jammed expansion rule, we implement a forward Euler method

to solve these equations; specifically, we discretize the spatial coordinate x using a forward

difference form for first derivatives and a central difference form for second derivatives. The

update equations for nutrient concentration and bacterial cell density, corresponding to

Eqs. 3.1–3.2 respectively, are then:

cn+1
i = cni + δt

[
Dc

δx2
(cni−1 − 2cni + cni+1)− κbni g(cni )

]

bn+1
i = bni + δt

[
Db0μ(bni )

δx2
(bni−1 − 2bni + bni+1)−

1
δx
(bni+1vnci+1

− bni vnci) + γbni g(cni )
]

where time points advance in discrete steps of δt and are indexed by n, and spatial positions

are separated by discrete steps of δx and are indexed by i. The spatial resolution δx is 10

µm and the time step δt is 0.01 s; as shown in Fig. 3.3, these choices are sufficiently fine so

that our results are not sensitive to the choice of resolution. We note that implicit methods

(such as backwards Euler) or semi-implicit methods would likely improve the efficiency of

the numerical simulations—an important consideration for those seeking to extend our

work e.g., to higher spatial dimensions.

Figure 3.3: To assess the sensitivity of our results to numerical discretization, we repeat the simulation shown in Fig. 3.5,
which has spatial resolution of dx= 10 µm, with varying values of dx; the time step dt is correspondingly varied as
dt= 0.01 s× (dx/10 µm)2. As shown in the figure, the final pulse velocity vfr obtained from the simulations is not
strongly sensitive to the choice of numerical discretization.
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To connect our results to an experimental system, we use input parameters and initial

conditions that mimic the experiments described in163 (Chapter 2), which explored the

chemotactic spreading of E. coli populations in 3D porous media composed of densely-

packed hydrogel particles. Although the experimental system was cylindrical, we found that

rectilinear coordinates capture the essential features of the system. Thus, we use a Cartesian

rectilinear coordinate system extending to a maximum distance of 1.75× 104 µm, matching

the length of the experimental system. Because our system is one-dimensional, vectors (e.g.

fluxes) oriented in the+ or−x directions are represented by positive or negative quantities,

respectively, with the vector notation suppressed. Both boundaries have no flux conditions.

In these experiments, L-serine was considered to act as the primary nutrient and chemoat-

tractant for cells. Because the hydrogel particles are polymer networks swollen in liquid,

they are permeable to the nutrient, similar to many other naturally-occurring media such as

biological gels and microporous clays/soils. Therefore, we take the nutrient diffusivityDc

to be equal to its value in bulk liquid, 800 µm2 s−1 242, and the nutrient is initially saturated

at c∞ = 10 mM throughout the simulation domain. For all the simulations, we use direct

measurements of individual cells28,45,163 to choose fixed values of the cellular parameters

c−, c+, and γ given by 1 µM, 30 µM, and 0.69 h−1, respectively; furthermore, as detailed in

§3.2.6, we use the data from experiments on spreading populations163 to directly determine

cchar and κ, given by 10 µM and 1.3× 10−12 mM (cells/mL)−1 s−1, respectively.

Each experiment used a long 3D-printed cylinder of close-packed cells not containing

hydrogel particles (φ= 1) as the initial inoculum, embedded within and surrounded by

the 3D porous medium. The cells then continued to spread radially outward through the

pore space. Thus, as the initial condition in all the simulations, we consider a Gaussian
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profile of b(x, t= 0) centered at x= 0 with a full width at half maximum of 100 µm and

a peak number density of b0 = bmax ≡ 3/(4πd3) = 2.4 × 1011 cells/mL, where bmax is

defined as the number density of close-packed cells and is therefore the maximum possible

value of b0—with the exception of the lower-density simulations presented in Figs. 3.7–

3.8, which employ a lower value of b0. Hence, for all simulations except those in Figs. 3.7–

3.8, the initial inoculum has a maximal cell density bmax > bjammed, where bjammed instead

corresponds to the maximal possible density of cells in confinement (φ< 1). For simplicity,

wherever b(x, t= 0)> bjammed, we still apply the jammed growth spreading rule described

in §3.2.3(iii), but with bjammed replaced by b(x, t = 0).

The experiments tuned cellular confinement by using porous media with varying porosi-

ties φ and mean chord lengths l̄c 39, resulting in varying values of the transport parameters

Db0 and χ0
38,163. In particular, as determined from the experiments,Db0 and χ0 both de-

crease with increasing confinement as cellular mobility is increasingly hindered. Hence, in

our simulations, we tune confinement by varying these parameters, using the values ofDb0

obtained from single-cell imaging163 and extracting χ0 from experimental measurements of

population spreading, as detailed in §3.2.6.

3.2.6 Determining κ, cchar, and χ0 parameters from experimental data

The parameter values for κ, cchar, and χ0 are crucial for fitting to experimentally observed

pulse propagation speeds. In our previous work163 (Chapter 2), we chose values of κ and

cchar based on previous measurements28,45, and therefore only χ0 was treated as a fitting

parameter. While the previous simulations based on these choices reasonably captured

the formation and propagation of bacterial pulses observed in experiments, as well as the
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experimentally-observed dependence of pulse skewness, height, and speed on confinement,

the widths of the simulated pulses differed noticeably from the experiments. Because the

goal of this present paper is to more closely investigate pulse shape and dynamics, here we

develop a new protocol to determine all three parameters κ, cchar, and χ0 from the experi-

mental data. The experiment is summarized in §3.2.5. The primary dataset we use for fit-

ting (shown in Fig. 3.4 and taken from163) is obtained from a late time experimental profile

for cells in intermediate confinement (corresponding to §3.3.1).

Figure 3.4: Experimental cellular signal of traveling front under intermediate confinement from163. Experiments begin
with a dense packed cylindrical inoculum of E. coli embedded within a porous media with mean pore size 1.7 µm. A
pulse forms and propagates outward; the dataset shows the final time point of 10.75 h. The experiment used confocal
microscopy of cells constitutively expressing green fluorescent protein; we take the fluorescence data thereby obtained
from the mid‐plane of the bacterial cylinder and normalize it by the brightest region of the initial inoculum. This normal‐
ized cellular signal is then converted to cell density by multiplying with bmax = 0.95× 1012 cells/mL. Arrow indicates
location identified as trailing behind the pulse, xtrailing, and the corresponding cellular density is btrailing = 1.5× 109
cells/mL.

Determining κ. At long times, given that the pulse is nearly unchanging in time, we take

∂c/∂t=−vfr∂c/∂ω and ∂b/∂t=−vfr∂b/∂ω. Applying these definitions in Eqs. 3.1–3.2

and integrating over all space, with the boundary conditions b(ω=∞) = 0, c(ω=∞) =

c∞, b(ω= 0) = btrailing, and c(ω= 0) = 0 yields the steady-state relationship between nu-

trient influx into the pulse to the cells being shed at the rear, κ= c∞γ/btrailing. Here, c∞ was

fixed in the experiments to be 10 mM and γ was directly measured to be 0.69 h−1. Thus,

using the btrailing = 1.5 × 109 cells/mL directly obtained from the experimental profile, we
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obtain κ= 1.3 × 10−12 mM (cells/mL)−1 s−1. This value, which we use for all the simula-

tions reported here, is in excellent agreement with previously reported values28,45.

Determining cchar and χ0. Having obtained κ, we next use the experimental data to de-

termine cchar and χ0. To do so, we first re-run the simulation of §3.3.1 but with cchar chosen

to be either 1, 5, 10, 50, or 100 µM—values that span the range reported in previous ex-

periments28,29,45. For each choice of cchar, we then determine the value of χ0 for which the

simulation vfr best matches the experimental value. Then, having fit vfr, we pick the value

of cchar for which the simulated pulse width best matches the experimental data. Together,

this iterative procedure yields the unique combination of {cchar, χ0} that best matches the

experimental long-time pulse speed and width. We thereby obtain cchar = 10 µM and χ0 =

94 µm2s−1 for cells in intermediate confinement. Because cchar is an intrinsic cellular prop-

erty, and thus does not depend on confinement, we then use this value of cchar for other

simulations testing weak and strong confinement as well. For each of these, we again obtain

χ0 by fitting the long-time vfr between simulations and the experiments. We obtain χ0 =

3700 µm2s−1 and χ0 = 16 µm2s−1 for weak and strong confinement, respectively.

3.2.7 Parameters

The confinement-dependent parameters are summarized in Table 3.1. The corresponding

dimensionless parameters characterizing the Keller-Segel model (§3.2.2) are also summa-

rized in Table 3.1:

• The diffusion parameter δ0 ≡ Dc/Db0 increases with confinement as cellular mo-

bility is increasingly hindered. For all conditions tested here, however, δ0 is always

much greater than one, reflecting fast diffusion of nutrient; thus, we expect that
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nutrient levels vary over large spatial extents, as confirmed in the simulations that

follow.

• For all conditions tested here, the directedness parameter α0 ≡ χ0/Db0 is always

much greater than one, indicating that motile cells strongly direct their motion in re-

sponse to the nutrient gradient established through consumption. Intriguingly, the

α0 determined from the experimental parameters decreases with increasing confine-

ment, indicating that confinement more strongly hinders directed versus undirected

motion—consistent with previous reports that confinement fundamentally alters

the mechanism by which cells perform chemotaxis163. Further investigating the de-

terminants of α0 in confinement will be a useful direction for future experiments.

• Because the maximal growth rate is not affected by confinement163, the yield param-

eter β0 ≡ γ/(b0κ/c∞) is independent of confinement for all of our simulations. For

all simulations employing b0 = bmax, β0 is much less than one, reflecting the fact that

nutrient consumption by a maximally dense population is faster than cellular prolif-

eration; conversely, for the lower-density simulations presented in Figs. 3.7–3.8, β0 is

much greater than one, indicating the dominant role of proliferation in this case.
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Parameter Weak
confinement Intermediate confinement Strong

confinement
φ 0.36 0.17 0.04

l̄c (µm) 4.6 3.1 2.4
Db0

(
µm2s−1

)
2.3 0.93 0.42

χ0
(
µm2s−1

)
3700 94 16

b̄/bmax 0.10 0.027 0.026
δ0 ≡ Dc/Db0 340 860 1900
δ ≡ Dc/Db(b̄) 2.8× 104 1.2× 104 4.3× 105

α = α0 ≡ χ0/Db0 1600 100 38
β0 ≡ γ/ (b0κ/c∞) 0.0063 0.0063 (b0 = bmax), 630 (b0 = 10−5bmax) 0.0063
β ≡ γ/

(
b̄κ/c∞

)
0.06 0.23 0.25

Λ0 ≡ α0/
(
β0δ0

)
750 18 (b0 = bmax), 1.8× 10−4 (b0 = 10−5bmax) 1.3

Λ ≡ α/ (βδ) 0.95 0.037 3.6× 10−4

Table 3.1: Parameters used to describe bacteria in weak, intermediate, and strong confinement, as defined in the text.
All parameters are defined in the text and their values are obtained from experiments as detailed in §3.2.5 and the SI,
with the exception of b̄, which is determined directly from the simulation. We note that the values of α0 are taken
directly from the experiments in 163, which indicate that this parameter surprisingly decreases with increasing confine‐
ment. Thus, while we expect that both transport parameters χ0 andDb0 are tuned by confinement in a similar way,
with both proportional to l̄ 2c /τt, it appears from the experiments that the ratio of the proportionality constants for each
is also confinement‐dependent. That is, experiments suggest that confinement more strongly hinders directed (quanti‐
fied by χ0) versus undirected (quantified byDb0) spreading. While more work needs to be done to fully unravel why this
is the case, in absence of a theoretical model for the confinement‐dependence of α0, we directly use the experimental
values in our work. Furthermore, in the absence of any experimental data assessing the influence of cell density on α,
we make the simplest possible assumption that cell‐cell collisions hinder both χ0 andDb0 through the same crowding
correction factor μcrowd(b), which quantifies the reduction in free space available to the cells. Thus, we take α= α0.
Future experiments could further probe this density dependence and motivate the introduction of additional extensions
to our model.
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Therefore, for our simulations testing the influence of confinement on bacterial spread-

ing, the parameter Λ0 ≡ α0/(β0δ0) varies over a broad range, decreasing over nearly three

orders of magnitude as confinement increases. We note that because the different parame-

ters δ0, α0, β0 do not incorporate the influence of density-dependent cellular crowding, we

do not expect this transition to occur precisely at Λ0 ≈ 1. We therefore define a new version

of this parameter, Λ≡ α/(βδ), where now δ≡Dc/Db(b̄), α≡ χ(b̄)/Db(b̄) = α0, and β≡

γ/(b̄κ/c∞) (Table 3.1); b̄ is defined as the long-time mean cell density within each prop-

agating pulse, and is directly calculated from each simulation as described further below.

Thus, the newly-defined Λ explicitly incorporates density-dependent crowding. As sum-

marized in Table 3.1, our simulations explore the transition from weak confinement (Λ=

0.95) to strong confinement (Λ= 3.6 × 10−4); consistent with our expectation, this range

reflects a transition from chemotactic to growth-driven spreading, as demonstrated directly

by the simulations presented below.

3.3 Results

3.3.1 Intermediate confinement

As a prototypical starting case, we first examine bacterial spreading from a dense-packed

Gaussian-shaped inoculum under intermediate confinement (Λ= 0.037), shown by the

initial profile for t= 0 in Fig. 3.5A. The simulation incorporates both motility and growth.

The cells rapidly deplete nutrient locally via consumption over a time scale∼ c∞/ (κbmax)

≈ 30 s, establishing a steep nutrient gradient at the leading edge of the population. This

gradient extends over a large distance ahead of the population (Fig. 3.5B and inset)—as ex-

pected from our calculation of the diffusion parameter δ0 ≫ 1. Cells at this leading edge
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Figure 3.5: Results from a numerical simulation of population spreading in intermediate confinement. The simulation
incorporates both motility and growth. (A) shows the dynamics of the cells while (B) shows the corresponding dynamics
of the nutrient, quantified by the normalized density b/bmax and concentration c/c∞, respectively. As noted in §3.2.5,
the initial inoculum is composed purely of dense‐packed cells with liquid between them (φ= 1), with the entire inocu‐
lum surrounded by the obstacle‐filled medium (φ= 0.17); hence, the initial inoculum has b= bmax, which is larger
than bjammed, the jamming density of cells in confinement. Different colors indicate different times as listed. The dense
inoculum initially centered about the origin spreads outward, first as a jammed front (jamming density shown by the
dashed grey line in A), then detaching as a coherent lower‐density pulse that propagates continually via chemotaxis.
At long times, this pulse appears to approach an unchanging shape and speed, as suggested by the collapse of the
profiles in the upper inset (showing the same data, but shifted horizontally to center the peaks). The cellular dynamics
arise in response to consumption of the nutrient, which is initially saturated everywhere, but is rapidly depleted and
forms a gradient that is propagated with the pulse (inset shows the same data but with both axes zoomed out). In B,
the three dashed grey lines show the characteristic concentrations of sensing c+ and c− and the characteristic Monod
concentration cchar; the corresponding positions are shown by the pluses, diamonds, and triangles, respectively, in A‐B.

then continue to grow outward as a jammed front with b= bjammed, shown by the flat re-

gion at t= 1.8 h in Fig. 3.5A. Eventually, a lower-density, coherent pulse of cells detaches

from this jammed region (t= 3.7 h), continues to propagate the nutrient gradient along

with it, and thus continues to spread outward (t> 3.7 h), as shown by the outward-moving

peak in Fig. 3.5A.

Indeed, this pulse spans the extent over which nutrient varies between the upper and

lower bounds of sensing, c+ and c− (pluses and diamonds shown for the t= 11 h profiles,
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respectively)—reflecting the central role of chemotaxis in driving its propagation. The for-

ward face of the pulse is also exposed to sufficient nutrient for cells to proliferate (with c

≥ cchar, the characteristic Monod concentration, shown by the triangles on the t= 11 h

profiles)—suggesting that cellular growth contributes to population spreading over long

time scales, as well. The overall width of this pulse,W≈ 200 µm, is set by the length scale

over which nutrient is depleted by consumption; at its rear, the nutrient concentration and

nutrient gradient are both low, causing both growth and chemotaxis to be hindered. As

a result, cells are shed at a near-constant density btrailing ≈ 0.02b/bmax (see 0.5 mm< x<

1.2 mm in Fig. 3.5A). This coherent pulse of cells continues to move apparently without

an appreciable change in shape, as suggested by the inset to Fig. 3.5A, at a speed vfr ≈ 0.15

mm/h. However, given the limited duration of the simulation, our results do not enable

us to definitively conclude that the simulated pulse develops into a traveling wave with an

unchanging shape; building on our simulation to explore longer length and time scales

to test this possibility will be a useful direction for future work. The nutrient profile con-

comitantly propagates with the pulse, as shown in Fig. 3.5B. Notably, similar spreading

behavior was observed in experiments163; as shown in Fig. 3.4, in both simulation and ex-

periment, we observe similarly-shaped bacterial pulses with comparable widths, trailing

densities (compared to the peak densities), and final positions at t≈ 11 h.

Initial dynamics

To further characterize these spreading dynamics, we track the position Xf of the leading

edge of the population over time t, as shown in Fig. 3.6A. Specifically, motivated by a sim-

ilar definition used in prior experiments163, we define Xf as the position at which b falls
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below the threshold value b/bmax = 10−4. Initially, population spreading is hindered (Xf ∼

tν with ν≪ 1 e.g., red point), but as the coherent pulse forms and propagates, it eventually

approaches constant speed spreading (ν≈ 1 e.g., blue point). A similar transition from hin-

dered to constant speed spreading was observed in experiments163, although the underlying

reason has thus far remained unclear. Here, we use our model to clarify the origin of this

transition.

In particular, we examine the two different contributions to the motility-driven flux of

cells—active diffusion and chemotaxis—for the population at early and late times (Fig.

3.6B–C, respectively); for simplicity, we do not consider the added influence of growth,

which only plays an appreciable role for long times t≫ γ−1, until the next subsection. The

magnitude of the active diffusive flux−Db(b)∇b=−Db0μcrowd(b)∇b as it varies across

the population is shown by the dashed lines in the bottom panels of Fig. 3.6B–C, while the

magnitude of the chemotactic flux bvc = bχ0μcrowd(b)∇f(c) is shown by the dash-dotted

lines instead. At early times, the gradient in cell density is steep, as set by the sharp initial

profile of cells and the limited extent of subsequent population spreading (Fig. 3.6B, top).

As a result, spreading is primarily due to active diffusion, which dominates over chemo-

taxis, as shown in the lower panel of Fig. 3.6B. By contrast, as cells spread outward, the gra-

dient in cell density becomes less steep. As a result, at late times, spreading is primarily due

to chemotaxis, which dominates over active diffusion, as shown in the lower panel of Fig.

3.6C. This behavior is also reflected by the bottom set of circles and squares in Fig. 3.6D,

which represent the maximal diffusive and chemotactic fluxes across the population (ex-

emplified by the circles and squares in Fig. 3.6B–C) over time. Initially, the diffusive flux

dominates over the chemotactic flux; however, as the population continues to spread and
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Figure 3.6: Population dynamics, morphology, and fluxes driving spreading for the simulation of bacteria in intermediate
confinement (Fig. 3.5). The simulation incorporates both motility and growth. (A) Increase in the position of the leading
edge of the population is initially hindered (red), but approaches constant‐speed motion indicated by the triangle at long
times (blue). The corresponding instantaneous speed vfr is shown in the inset. (B) At a short time corresponding to the
red point in A, the population expands as a jammed front (top panel). Lower panel shows that cellular growth and diffu‐
sion are the primary contributors to the expansion of this front. (C) At a long time corresponding to the blue point in A,
the population spreads as a coherent pulse (top panel). Lower panel shows that chemotaxis is the primary contributor
to pulse propagation. Positions of the maximal diffusive and chemotactic fluxes are indicated by the circles and squares,
respectively, in B‐C; note the slight upward kink in the diffusive flux in C indicated by the circle. (D) Variation of the
maximal diffusive and chemotactic fluxes, indicated by the circles and squares in B‐C, over time. The initial population
dynamics are dominated by cellular diffusion (circles), while at longer times chemotaxis dominates (squares). To illustrate
the role played by cellular collisions, we show the same data with and without the crowding correction μcrowd in the
upper (grey) and lower (black) datasets; crowding hinders population spreading, as shown by the vertical offset in the
curves, but plays a less appreciable role at long times, as shown by the curves approaching each other.
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consume nutrient, the diffusive flux decreases and the chemotactic flux increases, with both

eventually approaching constant values at long times.

Another key factor that hinders the initial population spreading is cellular crowding.

To assess the influence of crowding, we compare the maximal diffusive and chemotactic

fluxes across the population, but with or without the crowding correction factor μcrowd(b)

(corresponding to the “with crowding” and “no crowding” datasets, respectively, in Fig.

3.6D). In both cases, the active diffusive flux dominates over the chemotactic flux initially,

but chemotaxis eventually dominates as the population continues to spread and establish

the nutrient gradient (e.g. top set of squares for t≤ 0.1 h). The spreading of the popula-

tion remains hindered, however; due to the high initial density of cells, crowding continues

to limit the chemotactic flux of cells, only enabling a small fraction at the leading edge of

the population to spread outward—as exemplified by the first two profiles in Fig. 3.5A,

the sharp decrease in both diffusive and chemotactic fluxes for x< 0.5 mm in Fig. 3.6B,

and the large difference between the two sets of squares in Fig. 3.6D. Eventually, as this

leading edge continues to spread, crowding in the forward face of the population becomes

sufficiently low, enabling the coherent pulse of cells to detach from the population—as ex-

emplified by the t= 3.7 h profile in Fig. 3.5A and the “kink” in the top set of squares at t

≈ 3 h in Fig. 3.6D. Hindrance due to crowding continues to decrease over time, as shown

by the diminishing difference between the two sets of squares in Fig. 3.6D for t> 3 h, and

eventually approaches a constant value.

Hence, population spreading is initially slow due to the time required for cellular con-

sumption to establish a sufficiently strong nutrient gradient to drive chemotactic spread-

ing. Cellular crowding near the initial inoculum then continues to hinder spreading until
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enough of the forward face of the population has spread outward—enabling cells to detach

as a coherent pulse that continues to move outward, eventually approaching a constant

speed.

Long-time behavior

Having established how the spreading population forms a moving pulse, we now seek to

clarify the factors that continue to drive its propagation. As previously described (Fig. 3.6),

active diffusion plays a negligible role at these longer times. Instead, as noted previously

when describing the t= 11 h profiles in Fig. 3.5, we expect that chemotaxis and growth

are the principal contributors to population spreading. In particular, the outward-moving

pulse spans the extent over which nutrient varies between the upper and lower bounds

of nutrient sensing—reflecting the central role of chemotaxis in driving its propagation.

The forward face of the pulse is also exposed to sufficient nutrient for cells to proliferate—

suggesting that cellular growth contributes to spreading, as well. Indeed, the time scale over

which this pulse propagates over its width∼W/vfr = 1.3 h is comparable to the time scale

of cellular proliferation, γ−1 = 1.4 h, further indicating that growth may contribute to pop-

ulation spreading. However, the relative influence of chemotaxis versus growth in driving

population spreading remains unclear.

Hence, we examine the long-time behavior of the pulse by considering a coordinate sys-

tem that moves with the pulse, ω≡ x − tvfr + ω0; ω0 is a constant shift factor chosen such

that ω= 0 is located at the rear of the pulse, at which b≈ btrailing. Here, both the bacterial

and nutrient gradients are negligible, eliminating diffusive and chemotactic fluxes of cells,

as shown in Fig. 3.6C. Within a time increment dt, the moving pulse leaves behindNloss ≈
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btrailingvfrAcdt cells, where Ac is the transverse cross sectional area. Simultaneously, growth

generatesNgrown ≈ Acdt
∫∞
ω=0 b(ω

′)γg(ω ′)dω ′ new cells within the pulse. Therefore,Nloss

≈Ngrown to preserve what we assume for simplicity to be a nearly-unchanging pulse of cells

(Fig. 3.5A, inset).

More generally, at locations further ahead (ω≥ 0),Nmotile ≈ J⃗mAcdt cells also travel with

the pulse through their motility-driven flux J⃗m =−Db∇b + bvc; here, b,∇b,Db, and vc

are all ω-dependent quantities. Thus, an unchanging profile of cells requires the more

general flux balanceNloss − Nmotile ≈Ngrown, where nowNloss ≈ bvfrAcdt andNgrown ≈

Acdt
∫∞
ω b(ω ′)γg(ω ′)dω ′; that is,

bvfr︸︷︷︸
Loss

+Db∇b︸ ︷︷ ︸
Diffusion

− bvc︸︷︷︸
Chemotaxis

≈
∫ ∞

ω
bγgdω ′︸ ︷︷ ︸

Growth

(3.12)

where all quantities except for the constants vfr and γ are position-dependent. This equa-

tion quantifies the intuition that the cells that cannot keep up with the moving pulse through

their motility must be replaced by growth so as to prevent a net loss of cells from the region

ahead of ω. Therefore, for a given position ω, the right hand side of Eq. 3.12 represents the

additional contribution to the overall spreading of the pulse due to cellular growth at ω≥

0. We therefore term this quantity the growth flux and compare it to the chemotactic flux

bvc.

Both fluxes are shown for the final profile in Fig. 3.6C; the growth flux is shown by the

dotted line and the chemotactic flux is shown by the dash-dotted line, both plotted on a

logarithmic scale. A version showing these fluxes on linear scales is shown in Fig. 3.10E.

For this case of intermediate confinement, both fluxes are appreciable, with the maximal
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chemotactic flux (3.4 × 10−4 cells µm−2s−1) slightly larger than the maximal growth flux

(1.5×10−4 cells µm−2s−1), indicating that chemotaxis plays a greater role in driving popula-

tion spreading. To further quantify this behavior, we evaluate Eq. 3.12 at two distinct posi-

tions: the rear of the pulse (ω= 0) and the peak of chemotactic flux, which we denote ωpeak

(indicated by the square in Fig. 3.6C). At both locations, the gradient in cell density is ap-

proximately zero, eliminating diffusive flux and simplifying our analysis. The chemotactic

flux is also approximately zero at the rear of the pulse (x≈ 1.2 mm in Fig. 3.6C). Moreover,

at both locations, the growth flux is approximately the same—reflecting the fact that only

the forward face of the pulse is exposed to sufficient nutrient for cells to proliferate. Hence,

equating both of these implementations of Eq. 3.12 yields an expression for the long-time

pulse speed:

vfr ≈ vc(ωpeak) + vfr
btrailing
bpeak

, (3.13)

where we have defined bpeak ≡ b(ωpeak). Therefore, the ratio btrailing/bpeak = 40% approx-

imates the fraction of the overall pulse speed attributable to growth, while the remaining

60% is due to chemotaxis.

This analysis also provides a way to extend a previous scaling estimate28 of the long-

time pulse speed vfr, which did not incorporate the influence of confinement in regulating

spreading. First, we note that the chemotactic velocity scales as vc(ωpeak)∼ χ
(
bpeak

)
/W,

whereW is the pulse width. Next, we relate the mean number density of cells b̄≡

W−1
∫∞
0 bdω ′ to vfr through a flux balance of cells at long times, when the shape of the

pulse is unchanging over time. In particular, as described earlier, the rate at which cells are

left behind the pulse, btrailingvfrAc, is balanced by the rate at which growth generates new
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cells in the pulse, Ac
∫∞
0 bγgdω ′ = Acb̄Wγḡ, where we have defined the cell-weighted mean

ḡ≡
∫∞
0 g(c(ω ′))bdω ′/

∫∞
0 bdω ′ =

∫∞
0 g(c(ω ′))bdω ′/(b̄W). This flux balance yieldsW

= btrailingvfr/
(
b̄γḡ

)
, and therefore, vc(ωpeak)∼ χ

(
bpeak

)
b̄γḡ/

(
btrailingvfr

)
. Substituting this

expression into Eq. 3.13,

vfr ≈ χ
(
bpeak

) b̄γḡ(c)
btrailingvfr

+ vfr
btrailing
bpeak

. (3.14)

Multiplying both left and right hand sides by vfr, grouping terms to solve for v2fr, and multi-

plying the resulting solution by bpeakbtrailing
bpeakbtrailing

then yields our ultimate scaling estimate:

v2fr ≈ χ
(
bpeak

)
γḡ(c)

b̄bpeak
btrailing(bpeak − btrailing)

. (3.15)

This estimate thus extends a previous calculation28 by explicitly incorporating the influence

of confinement. To evaluate the accuracy of this estimate, we use the long-time simula-

tion data to directly determine all the parameters on the right hand side of Eq. 3.15 and

thereby obtain vfr. We find reasonable agreement between the predicted (via Eq. 3.15) and

simulated speeds to within a factor of two: the predicted value is 0.08 mm/h, while the

simulation yields 0.15 mm/h. This agreement also extends to the case of weak confinement,

discussed further in §3.3.2, for which the predicted value is 0.3 mm/h, while the simula-

tion yields 0.8 mm/h, within a factor of 2.5. Hence, Eq. 3.15 provides a straightforward

way to approximately relate the long-time shape of a pulse to its propagation speed, even in

confinement.

Finally, we note that the fluxes associated with chemotaxis and growth also determine
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the overall shape of the spreading population; for simplicity, we neglect the diffusive flux,

given that it is at least one order of magnitude smaller than the chemotactic and growth

fluxes (Fig. 3.6C). In particular, as quantified in Eq. 3.12, the cellular profile b(ω) is given

by the sum of the chemotactic and growth fluxes, scaled by the constant vfr. Our results

confirm this expectation: as shown in Fig. 3.6C, the location of the bacterial pulse nearly

coincides with the peak in the chemotactic flux, while the steady increase in growth flux

from the leading edge to the rear coincides with the additional asymmetry in the bacterial

profile arising from the trail of cells shed from the moving pulse. Taken together, these re-

sults therefore demonstrate that the interplay between chemotaxis and growth determines

both the long-time speed and shape of the spreading population.

Influence of initial cell density

Our analysis thus far considered a dense initial inoculum, for which cellular crowding hin-

ders the formation and detachment of a pulse; at much longer times, this less-crowded

pulse no longer resembles the initial inoculum, but instead is shaped by the interplay of

chemotaxis and growth (Fig. 3.6). We therefore expect that for a lower-density inoculum,

a similar pulse also emerges at long times, but with initial dynamics that are limited instead

by the time required for cellular consumption to establish a sufficiently strong nutrient

gradient. To test this expectation, we repeat the simulation shown in Fig. 3.5, but using an

initial peak number density of cells that is 105 times smaller (b0 = 10−5bmax).

In the previously-considered case of a dense inoculum, the cells deplete nutrient rapidly

via consumption, and the population subsequently spreads from its leading edge as a

growing jammed front (first two curves in Fig. 3.5). By contrast, with a more dilute in-
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oculum, nutrient depletion takes much longer. Instead, the population continually grows

and spreads as a whole (red to blue curves in Fig. 3.7A inset), not just at its leading edge,

without appreciably depleting nutrient. It eventually reaches a maximal density b ′ = b0eγt
′

for which the time scale of subsequent nutrient depletion tdep ∼ c∞/ (κb ′) is compara-

ble to the time scale of subsequent growth tg ∼ γ−1; equating these time scales yields t ′ =

γ−1 ln
(

c∞γ
b0κ

)
. Therefore, we expect that nutrient is fully depleted at the initial inoculum

after t ′ + tdep ∼ γ−1
[
ln
(

c∞γ
b0κ

)
+ 1

]
≈ 11 h. The simulation results are consistent with this

estimate, which neglects spatial variation in nutrient availability through the entire popula-

tion and thus serves as a lower bound, showing that nutrient is fully depleted at the initial

inoculum after∼ 14 h (red to blue curves in Fig. 3.7B inset). The nutrient gradient again

extends over a large distance ahead of the population, as expected from our calculation of

the diffusion parameter δ0 ≫ 1.

Unlike the case of a dense inoculum, the population does not subsequently spread as a

jammed front. Instead, once the nutrient gradient is sufficiently strong, a coherent pulse

of cells again detaches without the prior formation of a jammed front, continues to prop-

agate the nutrient gradient with it, and continues to spread outward (t> 15 h in Fig. 3.7).

Consistent with our expectation, this pulse is noticeably similar to that which arises in the

dense inoculum case: it has a nearly-identical shape and also appears to move without an

appreciable change in shape, eventually reaching approximately a similar constant speed vfr

≈ 0.1 mm/h (compare late-time profiles in Figs. 3.5 and 3.7). Evaluating the speed by in-

stead tracking the position of the peak, instead of the leading edge, also yields a comparable

value of vfr ≈ 0.16 mm/h.

To further characterize the population spreading dynamics, we again plot the leading
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Figure 3.7: Results from a numerical simulation of population spreading in intermediate confinement starting from a
more dilute inoculum. The simulation incorporates both motility and growth. (A) shows the dynamics of the cells while
(B) shows the corresponding dynamics of the nutrient, quantified by the normalized density b/bmax and concentration
c/c∞, respectively. Different colors indicate different times as listed. The dilute inoculum (jamming density shown by
the dashed grey line in A) initially centered about the origin first grows exponentially and spreads diffusively until nutri‐
ent is locally depleted (upper inset shows the same data, but zoomed in to the vertical axis); only then does a coherent
pulse detach and propagate continually via chemotaxis in response to the nutrient gradient (lower inset shows the same
data but with both axes zoomed out). Even though the short‐time behavior is different from the case of a more dense
inoculum shown in Fig. 3.5, the long‐time behavior of this pulse is identical. To facilitate comparison with Fig. 3.5, in B,
the three dashed grey lines again show the characteristic concentrations of sensing c+ and c− and the characteristic
Monod concentration cchar; the corresponding positions are shown by the pluses, diamonds, and triangles, respectively,
in A‐B.

edge position Xf as a function of time t. As in the case of a dense inoculum, Xf ∼ tν with

ν ≪ 1 at early times, transitioning to ν≈ 1 at later times (Fig. 3.8A); however, these seem-

ingly similar dynamics reflect fundamentally different underlying processes at early times.

With a more dilute inoculum, slower nutrient depletion causes the diffusive flux to ini-

tially dominate over chemotaxis (Fig. 3.8B) without any influence of cellular crowding—

indicated by the overlap of the early-time points with/without the crowding correction in

Fig. 3.8D. As cells continue to grow and consume nutrient, they eventually establish a suf-

ficiently strong gradient and spread as a coherent pulse via chemotaxis—as indicated by
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Figure 3.8: Population dynamics, morphology, and fluxes driving spreading for the simulation of bacteria in intermediate
confinement, but from a more dilute initial inoculum (Fig. 3.7). The simulation incorporates both motility and growth. (A)
Increase in the position of the leading edge of the population is initially hindered (red), but approaches constant‐speed
motion indicated by the triangle at long times (purple). The corresponding speed vfr is shown in the inset. (B) At a short
time corresponding to the red point in A, the population grows exponentially (top panel) and spreads primarily through
growth and diffusion (lower panel). (C) At a long time corresponding to the purple point in A, the population spreads
as a coherent pulse (top panel). Lower panel shows that chemotaxis is the primary contributor to pulse propagation.
Positions of the maximal diffusive and chemotactic fluxes are indicated by the circles and squares, respectively, in
B‐C; note the slight upward kink in the diffusive flux in C indicated by the circle. (D) Variation of the maximal diffusive
and chemotactic fluxes, indicated by the circles and squares in B‐C, over time. The initial population dynamics are
dominated by cellular diffusion (circles), while at longer times chemotaxis dominates (squares). To illustrate the role
played by cellular collisions, we show the same data with (black) and without (grey) the crowding correction μcrowd
in the datasets indicated by the red lines; the data are identical except at long times, when crowding slightly hinders
population spreading.
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the dominant role of the chemotactic flux at long times (Fig. 3.8C-D). At these later times,

the different contributions to the bacterial flux are nearly identical to those that drive pulse

propagation in the case of a dense inoculum (compare Figs. 3.8C and 3.6C). Indeed, the

fractions of the overall pulse speed attributable to chemotaxis and growth, as quantified by

Eq. 3.13, are≈ 58% and 42%, respectively—nearly identical to the case of a dense inocu-

lum. Hence, while the initial dynamics of population spreading are sensitive to the initial

cell density—consistent with experiments163—the properties of the pulse that forms and

continues to drive spreading at long times are not, instead being set solely by the interplay

between chemotaxis and growth.

3.3.2 Influence of confinement

For the case of intermediate confinement explored thus far, we have established that chemo-

taxis and growth both drive population spreading at long times. How does this behav-

ior change with confinement? As quantified in Figs. 3.6D and 3.8, confinement-induced

crowding limits the chemotactic flux; therefore, we expect that with reduced or increased

confinement, chemotaxis or growth plays a more dominant role in driving spreading, re-

spectively. To test this expectation, we perform the same simulation with a dense inoculum

as in Figs. 3.5–3.6, but with different values of the confinement-dependent parameters

as summarized in Table 3.1. In particular, our simulations explore Λ= 0.95, 0.037, and

3.6 × 10−4, representing weak, intermediate, and strong confinement (top, middle, and

bottom rows in Figs. 3.9–3.10), respectively.
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Figure 3.9: Increasing confinement causes a transition from fast chemotactic pulse propagation to slower jammed
growth expansion. Panels show results from numerical simulations of population spreading from the same dense inocu‐
lum initially centered about the origin in weak, intermediate, and strong confinement, shown by top, middle, and bottom
rows respectively. First column shows the results of the full model, while second and third columns show the same
simulations with growth or chemotaxis omitted, respectively. We only show the normalized cellular density b/bmax
for clarity. As noted in §3.2.5, the initial inoculum is composed purely of dense‐packed cells with liquid in between
them (φ= 1), surrounded by the obstacle‐filled medium (φ< 1); hence, the initial inoculum has b= bmax, which is
larger than bjammed, the jamming density of cells in confinement. Different colors indicate different times as listed in
the color scale. In weak confinement, a coherent pulse rapidly detaches and continually propagates; this pulse is driven
primarily by chemotaxis, and thus, omitting growth barely changes the dynamics while omitting chemotaxis abolishes
the propagation altogether. Conversely, in strong confinement, the population spreads slowly as a jammed front, driven
primarily by growth. In intermediate confinement, both growth and chemotaxis drive population spreading. The dashed
grey line shows the jamming density, which varies depending on confinement (and is larger than the vertical scale in the
top row).
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In all cases, the cells first rapidly deplete nutrient locally via consumption, generating

a nutrient gradient that again extends over a large distance and drives subsequent spread-

ing at the leading edge of the population. However, consistent with our expectation, and

with experimental observations163, the nature of this spreading is strongly confinement-

dependent.

Weak confinement

In the case of weak confinement, cells detach and spread as a lower-density, coherent, prop-

agating pulse without first growing outward as a jammed front (Fig. 3.9A), unlike the case

of intermediate confinement (Fig. 3.9B). This pulse is notably sharper and faster, with the

long-time pulse speed and peak height≈ 5.4 and 3.9 times larger than in intermediate con-

finement (also compare Panels A–B and D–E in Fig. 3.10)—reflecting the dominant role

of chemotaxis in driving spreading, as expected from the larger value of Λ. Quantification

of the different fluxes driving spreading corroborates this expectation (Fig. 3.10D); indeed,

following our previous analysis summarized by Eqs. 3.12–3.13, we find that≈ 93% of the

overall pulse speed is attributable to chemotaxis in the case of weak confinement.

As a final confirmation of this point, we re-run the simulations, but with either growth

or chemotaxis removed—shown by the second and third columns of Fig. 3.9, respectively—

thereby isolating the contributions of chemotactic and growth-driven spreading. In the

prototypical case of intermediate confinement, both chemotactic and growth-driven spread-

ing play appreciable roles; compare Panels E and H to B in Fig. 3.9, as well as the different

curves in Fig. 3.10B and E. However, in the case of weak confinement, chemotactic spread-

ing dominates, as expected; the simulation without growth (Fig. 3.9D) is nearly identical
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to that incorporating all factors (Fig. 3.9A), while the simulation without chemotaxis (Fig.

3.9G) yields a population that barely spreads—also seen by comparing the different curves

in Fig. 3.10A and D. Therefore, chemotactic propagation dominates under lesser confine-

ment, enabling the population to spread faster as a sharp, coherent pulse.

Strong confinement

Population spreading is markedly different in strong confinement. In this case, cells do

not form a coherent pulse at all; instead, they continually grow outward as a jammed front

(Fig. 3.9C), unlike the case of intermediate confinement (Fig. 3.9B). Notably, this front

does not have a well-defined speed at long times, in stark contrast to the cases of weaker

confinement explored previously. Instead, the leading edge position progresses as Xf ∼ tν

with ν≈ 0.5 at long times, as shown by the solid curve in Fig. 3.10C—and thus, the pop-

ulation spreads less effectively. This diffusive scaling of Xf is at odds with the prediction of

the classic Fisher–KPPmodel, commonly used to describe growth-driven spreading, that

the population spreads at a constant speed as a traveling wave28,225. Instead, our finding is

consistent with the results of agent-based simulations of a growing population of jammed,

incompressible cells227, which also found ν≈ 0.5 in the limit of fast nutrient consumption.

In this case, front propagation via growth of the jammed population lags behind nutrient

diffusion—leading to the diffusive scaling of Xf observed in our simulations as well as those

of227. This difference with the prediction of the classic Fisher–KPPmodel suggests that the

logistic form of growth used therein does not adequately describe jammed growth spread-

ing. We are not aware of any experiments testing this prediction; performing such a study

would be a valuable direction for future research.
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Figure 3.10: Population dynamics, morphology, and fluxes driving spreading for simulations of bacteria in weak, inter‐
mediate, and strong confinement (Fig. 3.9) as shown by the top, middle, and bottom rows, respectively. (A‐B) Increase in
the position of the leading edge of the population is initially hindered, but approaches constant‐speed motion indicated
by the triangle at long times. In strong confinement (C), however, the long‐time behavior approaches diffusive‐like scal‐
ing instead. (D‐E) At long times, the population spreads as a coherent pulse (solid line) driven primarily by chemotaxis
in weak confinement, and by both chemotaxis and growth in intermediate confinement. (F) In strong confinement,
however, the population spreads slowly as a jammed front, driven primarily by growth.
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This dominant role of growth in driving spreading in the case of strong confinement is

expected from the smaller value of Λ; it is also corroborated by quantification of the differ-

ent fluxes driving spreading (Fig. 3.10F). Removing growth or chemotaxis from the simula-

tion provides a final confirmation of this point; the simulation without growth (Fig. 3.9F)

yields a population that barely spreads, while that without chemotaxis (Fig. 3.9I) is nearly

identical to that incorporating all factors (Fig. 3.9C)—also seen by comparing the differ-

ent curves in Fig. 3.10C and F. Hence, growth-driven spreading dominates under stronger

confinement, enabling the population to spread diffusively as a jammed front.

3.4 Conclusion

Ever since the discovery of bacteria over 300 years ago, lab studies of their spreading have

typically focused on cells in unconfined environments such as in liquid cultures or near

flat surfaces. However, in many real-world settings, bacteria must navigate complex and

highly-confining environments. Thus, motivated by experimental observations of bacte-

rial motility38,39,45,163,233,234 and growth235,236 in confined settings, in this paper, we have

presented an extended version of the classic Keller-Segel model that incorporates the influ-

ence of confinement on bacterial spreading through both motility and growth. Versions of

the Keller-Segel model describing cellular aggregation and pattern formation in response

to cell-generated chemoattractant have in some cases considered cell density-dependent

motility224, but do not explicitly consider confinement, and do not also incorporate cel-

lular growth. Moreover, to our knowledge, there is no version of the Keller-Segel model

of bacterial spreading in response to external chemoattractant that treats the density- and

confinement-dependence of motility in an experimentally-motivated manner, and also
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incorporates cellular growth. The model described here provides a first step toward fill-

ing these gaps in knowledge, and in doing so, enabled us to examine the confinement-

dependent interplay between motility-mediated and growth-mediated spreading.

In particular, our extended model treats cellular collisions with rigid surrounding obsta-

cles, cellular collisions with each other, and growth-mediated spreading of jammed pop-

ulations of cells. As such, it helps to bridge the classic Keller-Segel model of chemotactic

spreading—which does not treat these effects and is therefore only appropriate to describe

the spreading of dilute populations in unconfined settings—and models of growth-driven

spreading (e.g.,227,228,241)—which do not treat motility-based spreading and are therefore

only appropriate to describe the spreading of highly-concentrated/confined and non-motile

populations. Indeed, non-dimensionalizing our extended model revealed the parameter Λ

that quantifies the confinement-mediated transition between chemotactic spreading (in

weak confinement with Λ≳ 1) and growth-driven spreading (in stronger confinement with

Λ< 1). Our analysis also provided a straightforward way to estimate, in general, the relative

contributions of chemotaxis and growth to the speed with which a population spreads.

While our prior experiments163 motivated and helped to parameterize and validate the

model used in this study, our prior work did not provide a full computational analysis of

the vastly different confinement-dependent spreading behaviors encoded by the model, and

how they can jointly influence bacterial population dynamics. Accomplishing this task was

the central goal of the present manuscript. To this end, numerical simulations of the model

enabled us to examine the implications of the confinement-mediated transition in behav-

iors for the full dynamics of bacterial spreading. As expected, in weak confinement, a dense

inoculum of bacteria rapidly depletes nutrient locally, causing a coherent pulse of cells to
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detach and continually propagate outward via chemotaxis—as predicted by the classic

Keller-Segel model26–29,35–37. However, with increasing confinement, cellular crowding

increasingly hinders both the initial formation of this pulse as well as its long-time propa-

gation speed. Moreover, with increasing confinement, growth plays an increasingly dom-

inant role in driving population spreading—eventually leading to a transition from fast

chemotactic spreading to slow, growth-driven spreading of a jammed front227. Therefore,

confinement is a key regulator of population spreading.

While chemotactic pulse propagation is well-characterized in unconfined settings29,32–34,

and conversely, jammed growth expansion has been investigated in some highly-confined

settings235,236, the interplay between these two behaviors has scarcely been studied. Hence,

we anticipate that our numerical characterization of this confinement-mediated transition

from chemotactic- to growth-driven spreading will help guide future experimental inves-

tigations of confined populations. Moreover, because our model describes spreading over

large length and time scales, we expect it could help more accurately describe the spreading

dynamics of bacteria in processes ranging from infections, drug delivery, agriculture, and

bioremediation. To this end, it would be interesting to extend our one-dimensional simula-

tions to higher dimensions, which could result in additional rich dynamics e.g., as recently

explored in243, and to media with spatially-varying confinement.

Our model represents a first step toward capturing the essential biophysical processes un-

derlying these complex dynamics, and necessarily involved some simplifying assumptions

and approximations. For example, based on recent experiments163, we treated the influ-

ence of cell-cell collisions using a mean-field approach in which the transport parameters

Db0 and χ0 are truncated in a cell density-dependent manner; incorporating more sophisti-
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cated collective dynamics192–194,196 will be an important extension of our work. Similarly,

we described jammed growth expansion by treating the population as an incompressible

“fluid”, similar to other models of growing immotile populations227,239,240 and motivated

by some experiments235,236, implemented in a discrete manner. An alternate continuum

description of growth could e.g., track the local growth velocity defined from the spatial

gradient of a pressure field within the growing population that originates from cell growth.

For the purposes of this paper, in which our central goal was to characterize the dynamics

of population spreading, we needed to only track the motion of the outer boundary of the

jammed region—which is readily accomplished using our discrete representation of growth

expansion. Developing a more detailed treatment of these growth dynamics using either

continuum or discrete approaches, such as by incorporating cellular deformations227 and

possible changes in cellular behavior that may result244, will be a useful direction for future

work. Furthermore, a simplifying assumption made in our model is that the solid obsta-

cles that induce confinement are rigid and immovable; incorporating deformations of the

surrounding medium will likely give rise to even more complex dynamics that will be inter-

esting to study. Finally, while our model assumes that nutrient diffusion is unimpeded by

the solid medium—which is likely to be the case in highly-permeable media such as biolog-

ical gels and microporous clays/soils—incorporating hindered nutrient diffusion that may

arise in other media will likely result in more complex dynamics that future extensions of

our work could explore.
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4
Chemotactic smoothing of collective

migration

4.1 Introduction

Having used our model to explore the influence of confinement on outward (one-dimensional)

motion in Chapters 2 and 3, we now apply the model to study shape change transverse to
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the outward direction. Thus, we demonstrate a mechanism by which collectively migrating

populations of E. coli autonomously smooth out large-scale perturbations in their overall

morphology. We show that chemotaxis in response to a self-generated nutrient gradient

provides both the driving force for collective migration and the primary smoothing mech-

anism for these bacterial populations. Using experiments on 3D printed populations with

defined morphologies (performed by others in the lab), we characterize the dependence

of this active smoothing on the wavelength of the perturbation and on the ability of cells

to migrate. Furthermore, using continuum simulations, we show that the limited ability

of cells to sense and respond to a nutrient gradient causes them to migrate at different ve-

locities at different positions along a front—ultimately driving smoothing of the overall

population and enabling continued collective migration. Our work thus reveals how cel-

lular signal transduction enables a population to withstand large-scale perturbations, and

provides a framework to predict and control chemotactic smoothing for active matter in

general.
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Figure 4.1: Experiments reveal that migrating E. coli populations autonomously smooth large‐scale morphological
perturbations. (A) Schematic of an undulated population (green cylinder) 3D‐printed within a porous medium made of
jammed hydrogel particles (gray). Each undulated cylinder requires∼ 10 s to print, two orders of magnitude shorter
than the duration between successive 3D confocal image stacks,∼ 10 min. The surrounding medium fluidizes as cells
are injected into the pore space, and then rapidly re‐jams around the dense‐packed cells. (B) Two‐dimensional xy slice
through the mid‐plane of the population. The starting morphology of the 3D‐printed population has undulation wave‐
length λ and amplitude A0, as defined by the undulated path traced out by the injection nozzle. The cells subsequently
swim through the pores between hydrogel particles, with mean pore size ξ. The population thereby migrates outward
in a coherent front that eventually smooths; we track the radial position of the leading edge of the frontRf and the
undulation amplitude A over time t. Caption continues on next page.
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Figure 4.1: (C)‐(E) Bottom‐up (xy plane) projections of cellular fluorescence intensity measured using 3D confocal image
stacks. Images show sections of three initially undulated populations in three different porous media, each at three
different times (superimposed white, yellow, cyan), as the cells migrate radially outward. A pixel corresponds to∼ 1
cell, and the images only show a magnified view of the overall population. Panels (C)‐(D) demonstrate the influence
of varying the undulation wavelength, keeping the mean pore size the same; increasing λ slows smoothing. Panels (C)
and (E) demonstrate the influence of varying the pore size, keeping the undulation wavelength the same; increasing ξ
hastens smoothing. (F) For each experiment shown in (C)‐(E), the undulation amplitudeA, normalized by its initial value
A0, decays exponentially with the time Δt elapsed from the initiation of smoothing at t= t0. Fitting the data (symbols)
with an exponential decay (red lines) yields the smoothing time τ for each experiment. (G) Smoothing time τ measured
in experiments increases with increasing undulation wavelength λ and decreasing medium mean pore size ξ, which
enables cells to migrate more easily. Error bars reflect the uncertainty in determining the initiation time t0 from the
exponential fit of the data.

4.2 Results

4.2.1 Chemotactic smoothing is regulated by perturbationwavelength and

cellular motility

As previously described in Chapter 2, to experimentally investigate the collective migration

of E. coli populations, we confine them within porous media of tunable properties38,39,163

consisting of hydrogel packings (Fig. 4.1A–B). A key feature of the hydrogel packings is

that they are yield-stress solids; thus, an injection micronozzle can move along a prescribed

path inside each medium by locally rearranging the particles, gently extruding densely-

packed cells into the interstitial space (Fig. 4.1A–B). The particles then rapidly re-densify

around the newly-introduced cells, re-forming a jammed solid matrix that supports the cells

in place with minimal alteration to the overall pore structure164–166. This approach is there-

This chapter has been adapted from “Chemotactic smoothing of collective migration”, by Tapomoy
Bhattacharjee*,Daniel B. Amchin*, Ricard Alert*, Jenna A. Ott, and Sujit S Datta, eLife 11, 71226 (2022)
*Equal contribution. Author Contributions: T.B. and S.S.D. designed the experiments; T.B. performed
all experiments with assistance from J.A.O.; D.B.A., J.A.O., and S.S.D. designed the numerical simulations;
D.B.A. performed all numerical simulations with assistance from J.A.O.; R.A. performed all theoretical calcu-
lations through discussions with S.S.D.; T.B., D.B.A., R.A., and S.S.D. analyzed the data; S.S.D. designed and
supervised the overall project. All authors discussed the results and implications and wrote the manuscript.
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fore a form of 3D printing that enables the initial morphology of each bacterial population

to be defined within the porous medium. The cells subsequently swim through the pores

between particles, migrating outward through the pore space. For example, as we showed

previously in Chapter 2163, cells of E. coli initially 3D printed in densely-packed straight

cylinders collectively migrate radially outward in smooth (“flat”), coherent fronts. These

fronts form and propagate via chemotaxis: the cells continually consume surrounding nu-

trient, generating a local gradient that they in turn bias their motion along28,29,33,34,245. As

each front of cells migrates, it propagates the local nutrient gradient with it through con-

tinued consumption, thereby sustaining collective migration. In the absence of nutrient,

migrating fronts do not form at all163.

To test how perturbations in the overall morphology of the population influence its sub-

sequent migration, other members of our lab 3D-print densely-packed E. coli in 1 cm-long

cylinders with spatially-periodic undulations as perturbations prescribed along the x di-

rection (Fig. 4.1B). Each population is embedded deep within a defined porous medium;

an initial population morphology is schematized at time t = 0 in Fig. 4.1B, with the un-

dulation wavelength and amplitude denoted by λ and A, respectively. An experimental

realization with A(t = 0) ≈ 300 μm, λ ≈ 0.8 mm, and ξ = 1.7 μm is shown in white in

Fig. 4.1C, which shows an xy cross section through the midplane of the population. After

3D printing, the outer periphery of the population spreads slowly, hindered by cell-cell col-

lisions in the pore space, as the population establishes a steep gradient of nutrient through

consumption163. Then, this periphery spontaneously organizes into a∼ 300 μm-wide

front of cells that collectively migrates outward (yellow in Fig. 4.1C). The undulated mor-

phology of this front initially retains that of the initial population. Strikingly, however, the
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front autonomously smooths out these large-scale undulations as it continues to propagate.

We characterize this behavior by tracking the decay of the undulation amplitude, normal-

ized by its initial value A0 ≡ A(Δt= 0), as a function of time elapsed from the initiation

of smoothing, Δt (green circles in Fig. 4.1F). The normalized amplitude decays exponen-

tially (red line in Fig. 4.1F), with a characteristic time scale τ≈ 2.5 h, and the population

eventually continues to migrate as a completely flat front (cyan in Fig. 4.1C).

We observe similar behavior when the wavelength λ is increased to 3.4 mm (Fig. 4.1D)

or when the pore size ξ is increased to 2.2 μm (Fig. 4.1E); however, the dynamics of front

smoothing are altered in both cases. Specifically, increasing the undulation wavelength

slows smoothing, increasing τ by a factor of≈ 3 to reach τ≈ 6.5 h (green squares in Fig.

4.1F). Conversely, increasing the pore size—which enables cells to migrate through the

pore space more easily—greatly hastens smoothing, decreasing τ by more than a factor of

≈ 10 to become τ≈ 0.2 h (blue circles in Fig. 4.1F). This behavior is consistent across mul-

tiple experiments with varying λ and ξ, as summarized in Fig. 4.1G. Our experiments thus

indicate that the smoothing of collective migration is regulated by both the undulation

wavelength and the ease with which cells migrate.

4.2.2 A continuummodel of chemotactic migration recapitulates the spatio-

temporal features of smoothing

Here, to simulate the chemotactic migration of populations with large-amplitude pertur-

bations, we numerically solve the same continuummodel as in Chapter 2, but now in 2D

using undulated morphologies as initial conditions for b as described in §4.4.1. Although

we do not expect perfect quantitative agreement between the experiments and simulations
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Figure 4.2: Continuum model captures the essential features of the smoothing of migrating bacterial populations. (A)‐(C)
Simulations corresponding to experiments reported in Fig. 4.1C–E, respectively, performed by numerically solving
Eqs. 2.2‐2.3 in two dimensions (xy plane). Images show the calculated cellular signal (details in §4.4) for three initially
undulated populations in three different porous media, each at three different times (superimposed white, yellow, cyan),
as the cells migrate outward. Panels (A)‐(B) demonstrate the influence of varying the undulation wavelength, keeping
the mean pore size the same; as in the experiments, increasing λ slows smoothing. Panels (A) and (C) demonstrate the
influence of varying the pore size, keeping the undulation wavelength the same; as in the experiments, increasing ξ,
incorporated in the model by using larger values of the diffusion and chemotactic coefficients as obtained directly from
experiments, hastens smoothing. (D) For each simulation shown in (A)‐(C), the undulation amplitudeA,normalized by
its initial value A0, decays exponentially with the time Δt elapsed from the initiation of smoothing at t= t0 as in the
experiments. Fitting the data (symbols) with an exponential decay (red lines) again yields the smoothing time τ for each
simulation. (E) Smoothing time τ obtained from the simulations increases with increasing undulation wavelength λ
and decreasing medium mean pore size ξ, as in the experiments. Error bars reflect the uncertainty in determining the
initiation time t0 from the exponential fit of the data.
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due to their difference in dimensionality and the simplified treatment of cell-cell interac-

tions, the simulated fronts form, collectively migrate, and smooth in a manner that is re-

markably similar to the experiments. Three examples are shown in Fig. 4.2C to 4.2E, cor-

responding to the experiments shown in Fig. 4.1C to 4.1E. Similar to the experiments, the

outer periphery of each population first spreads slowly, then spontaneously organizes into

an outward-migrating front that eventually smooths. We again find that the normalized

undulation amplitude decays exponentially over time, as shown in Fig. 4.2D. As in the ex-

periments, increasing the undulation wavelength λ slows smoothing; compare Fig. 4.2B to

Fig. 4.2A. Also as in the experiments, increasing the pore size ξ, which increases the migra-

tion parametersDb and χ, greatly hastens smoothing; compare Fig. 4.2C to Fig. 4.2A. This

variation of the smoothing time scale τ obtained from simulations with λ and ξ is summa-

rized in Fig. 4.2E. We observe the same behavior as in the experiments, with the absolute

values of τ agreeing to within a factor of∼ 3. This agreement confirms that the continuum

Keller-Segel model recapitulates the essential spatio-temporal features of smoothing seen in

the experiments.

4.2.3 Chemotaxis is the primary driver of front smoothing

The simulations provide a way to directly assess the relative importance of cellular diffu-

sion, chemotaxis, and cell proliferation to front smoothing. To this end, we perform the

same simulation as in Fig. 4.2A, but with each of the corresponding three terms in Eq. 2.3

knocked out, and determine the resulting impact on collective migration. This procedure

enables us to determine the factors necessary for smoothing.

While diffusion typically causes spatial inhomogeneities to smooth out, we do not expect
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Figure 4.3: Chemotaxis is the primary driver of morphological smoothing. Images show the same simulation as in Fig.
4.2A, which serves as an exemplary case, but with either (A) diffusive cell motion, (B) cell proliferation, or (C) cell chemo‐
taxis knocked out by setting the diffusivityDb, proliferation rate γ, or chemotactic coefficient χ to zero, respectively.
Simulated bacterial fronts lacking diffusion or proliferation still smooth, as shown in (A)‐(B), but simulated fronts lacking
chemotaxis do not smooth, as shown in (C)—demonstrating that chemotaxis is necessary and sufficient for the observed
morphological smoothing.

it to play an appreciable role in the front smoothing observed here: the characteristic time

scale over which undulations of wavelength λ≈ 1 mm diffusively smooth is∼ λ2/Db ≈

100 to 700 h, up to three orders of magnitude larger than the smoothing time τmeasured

in experiments and simulations. We therefore expect that the undirected motion of bacteria

is much too slow to contribute to front smoothing. The simulations for λ= 0.8 mm and

ξ= 1.7 μm confirm this expectation: settingDb = 0 yields fronts that still smooth over a

time scale τ∼ 1 h similar to the full simulations (Fig. 4.3A).

Another possible mechanism of front smoothing is differences in bacterial proliferation

at different locations along the front periphery—for example, the front would smooth if

cells in concave regions were able to proliferate faster than those in convex regions. How-

ever, differential proliferation typically destabilizes bacterial communities, as shown pre-

viously both experimentally and theoretically246–251. Furthermore, even if proliferation

were to help smooth the overall population, we again expect this hypothetical mechanism

to be too slow to appreciably contribute: the shortest time scale over which cells all grow-
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ing exponentially at a maximal rate γ∼ 1 h−1 spread over the length scale A0 ≈ 300 μm by

growing end-to-end is γ−1 log2 (A0/d)∼ 7 h, where d≈ 2 μm is the cell body length for

E. coli. This time scale is over an order of magnitude larger than the τmeasured in experi-

ments and simulations. The simulations again confirm our expectation: setting γ= 0 yields

fronts that still smooth over a time scale τ∼ 1 h similar to the full simulations (Fig. 4.3B).

These findings leave chemotaxis as the remaining possible mechanism of front smooth-

ing. The simulations confirm this expectation: setting χ= 0 yields a population that slowly

spreads via diffusion and proliferation, but that does not form collectively migrating fronts

at all (Fig. 4.3C). Therefore, chemotaxis is both necessary and sufficient for the observed

front smoothing.

4.2.4 Distinct modes by which chemotaxis impacts front morphology

How exactly does chemotaxis smooth bacterial fronts? To address this question, we exam-

ine the spatially-varying chemotactic velocity vc = χ∇f(c), which quantifies how rapidly

different regions of the population migrate via chemotaxis. To gain intuition for the deter-

minants of vc, we recast this expression in terms of the nutrient gradient:

vc = χf ′(c)︸ ︷︷ ︸
Response function

∇c︸︷︷︸
Forcing

. (4.1)

As in linear response theory, the chemotactic velocity can be viewed as the bacterial re-

sponse to the driving force given by the nutrient gradient,∇c, modulated by the chemo-

tactic response function χf ′(c). Thus, variations in chemotactic velocity along the leading

edge of the front, which specify how the overall front morphology evolves, are determined
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by the combined effect of variations in the nutrient gradient and the chemotactic response

function. We therefore examine each of these modes by which chemotaxis influences front

morphology in turn.

We first consider the nutrient gradient, which is the typical focus of chemotaxis stud-

ies. Our simulations, which numerically solve the coupled system of Eqs. 2.2-2.3, directly

yield the spatially-varying nutrient field c and therefore∇c. A snapshot from the repre-

sentative example of Fig. 4.2A is shown in Fig. 4.4A, with the contours of c= c− and c=

c+ indicated by the cyan and magenta lines, respectively. The contours are spaced closer

at the convex “peaks” (e.g., at y/λ= 0.5) than at the concave “valleys” (e.g., at y/λ= 0)

along the leading edge of the front. Thus, the magnitude of the driving force given by∇c

is larger at the peaks. We confirm this expectation by directly quantifying the nutrient gra-

dient along the leading edge, focusing on the component ∂xc in the overall front propaga-

tion direction (x) for simplicity, as shown by the orange symbols in Fig. 4.4C; as expected,

this driving force is stronger at the peaks. This spatial variation in the driving force pro-

motes faster outward chemotactic migration at the peaks than at the valleys, amplifying

front undulations—in opposition to our observation that the migrating population self-

smooths. Variations in the local nutrient gradient along the leading edge of the front do not

contribute to smoothing; rather, they oppose it.

We next turn to the chemotactic response function, which characterizes cellular signal

transduction. Because χ is a constant for each porous medium163, spatial variations in the

response function are set by variations in f ′(c). The sensing function f(c) is plotted in the

upper panel of Fig. 4.4B. It varies linearly as∼ c (1/c− − 1/c+) for c ≪ c− and saturates at

log (c+/c−) for c ≫ c+; the characteristic concentrations c− and c+ represent the dissocia-
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Figure 4.4: Chemotaxis alters the morphology of migrating bacterial fronts in two distinct ways. (A) Magnified view of
a migrating bacterial front from the simulation shown in Fig. 4.2A at time t= 41 min as a representative example. To
illustrate the spatially‐varying nutrient levels, we show the contours of constant nutrient concentration c= c+ and c=
c− in magenta and cyan, respectively; these represent characteristic upper and lower limits of sensing. The contours are
spaced closer at the leading edge of the convex peak (y/λ= 0.5) than the concave valley (y/λ= 0), indicating that
the magnitude of the local nutrient gradient is larger at peaks than at valleys. The nutrient concentration itself, which
increases monotonically with increasing x, is also larger at the peak than at the valley. (B) Top and bottom panels show
the variation of the nutrient sensing function f(c) and chemotactic response function f ′(c), respectively, with nutrient
concentration c. Because sensing saturates at high nutrient concentrations, chemotactic response is weaker at higher
c (peaks) than at lower c (valleys). (C) Top panel shows the x component of the nutrient gradient ∂xc (red, left axis) and
the response function f ′ (blue, right axis), and bottom panel shows the x component of the chemotactic velocity vc,x
= χf ′∂xc computed from these quantities, evaluated at different lateral positions y along the leading edge of the front
in (A). While the driving force of chemotaxis represented by ∂xc is smaller at the valley, the chemotactic response χf ′
is larger at the valley and dominates in setting vc,x: valleys move out faster than peaks, eventually catching up to them
and smoothing out the undulations. (D) For all simulations (Fig. 4.2E), the smoothing time τ determined by analyzing the
decay of large‐scale undulations (Fig. 4.2D) is similar to the time τ ′ needed for valleys to catch up to peaks estimated
using their different x‐component chemotactic velocities. Note that we do not expect an exact match between τ and τ ′

as they are related yet different quantities.
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tion constants of the nutrient for the inactive and active conformations of the cell-surface

receptors, respectively28–31. The response function χf ′(c) therefore decreases strongly as

c increases above c+, which accordingly is often referred to as an upper limit of sensing

(Fig. 4.4B, lower panel). That is, because high nutrient concentrations saturate cell-surface

receptors, the chemotactic response function decreases with nutrient concentration. In-

spection of the nutrient field indicates that nutrient concentrations are larger at the peaks

than at the valleys along the leading edge of the front (Fig. 4.4A). Thus, the chemotactic re-

sponse of cells is weaker at peaks than at valleys, as shown by the points in Fig. 4.4B, yield-

ing slower outward chemotactic migration at peaks than at valleys and thereby reducing the

amplitude of front undulations. Variations in the chemotactic response along the leading

edge of the front promote smoothing, unlike variations in the nutrient gradient.

4.2.5 Spatial variations in chemotactic response drive morphological smooth-

ing

We therefore hypothesize that the stabilizing effect of the chemotactic response (Fig. 4.4C,

blue) dominates over the destabilizing influence of the nutrient gradient (Fig. 4.4C, red),

leading to smoothing. Computation of the spatially-varying chemotactic velocity at the

leading edge of the front using Eq. 4.1, focusing on the x velocity component vc,x ≈ χf ′∂xc

for simplicity, supports this hypothesis: cells at concave regions migrate outward faster than

those at convex regions (Fig. 4.4C, lower panel). To further test this hypothesis, we assess

the influence of varying c+; we expect that reducing this upper limit weakens chemotactic

response not just at the peaks, but also the valleys, thereby slowing smoothing. While tun-

ing solely c+ is challenging in the experiments, this can be readily done in the simulation—
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yielding slower smoothing, as expected (Fig. 4.5).

Figure 4.5: Effect of reduced sensing. To investigate the influence of varying the upper limit of sensing c+, we repeat
the simulation for the prototypical case of ξ= 1.7 μm and λ= 0.8 mm but with c+ lowered by a factor of 15. Consis‐
tent with our expectation, we find that reducing this upper limit weakens chemotactic response not just at the peaks,
but also the valleys, thereby slowing smoothing. Image is presented as in Fig. 4.2A.

As a final test of our hypothesis, for each simulation shown in Fig. 4.2, we determine

the difference between the chemotactic velocities of the valleys and peaks, approximated by

Δvc,x ≈ χ[( f ′∂xc)valley − ( f ′∂xc)peak], as a function of time Δt. If smoothing is indeed due

to variations of the chemotactic velocity along the leading edge, then the smoothing time τ

determined by analyzing the decay of the undulation amplitude, A= A0e−Δt/τ (Fig. 4.2D-

E), should be similar to the time τ ′ at which valleys catch up to peaks, i.e.,
∫ τ ′

0 Δvc,x dΔt ≈

A0. To test this expectation, we plot the τ ′ values thus obtained for all of our simulations

of varying λ and ξ as a function of the corresponding τ, as shown in Fig. 4.4D. We find

that τ ′ and τ are indeed similar to one another in all cases—confirming that smoothing is

determined by spatial variations in chemotactic velocity.
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4.3 Conclusion

By combining experiments and simulations, this study elucidates a mechanism by which

collectively migrating populations can smooth out large-scale perturbations in their over-

all morphology. We focus on the canonical example of chemotactic migration, in which

coherent fronts of cells move in response to a self-generated nutrient gradient. The smooth-

ing of these fronts underlies the utility of standard agar-based assays for chemotaxis, in

which bacteria spread outward in smooth, circular rings from a dense inoculum28,44,45,252—

despite the presence of irregularities in the initial inoculum that are inevitably introduced

by human error. To our knowledge, the robustness of the front morphology to such per-

turbations has never been examined or quantitatively explained; as a result, previous studies

have only focused on the migration of the smooth fronts that ultimately result26–29,33,34,163,245.

Our work now provides an explanation for why perturbed fronts smooth out. It therefore

provides a counterpoint to previous studies investigating the ability of perturbations to in-

stead disrupt collective migration40–43,48–50,52,53,55–69. It also complements recent theoretical

work describing how chemotaxis can stabilize the hydrodynamic instabilities that arise in

unconfined populations of self-propelled particles253.

The 3D printing platform provides a unique way to tune the shape of the initial pertur-

bation, as well as the extent to which cellular migration is hindered. The experiments per-

formed by others in the lab using this approach reveal that the dynamics of smoothing are

regulated by both the undulation wavelength and the ease with which cells migrate. The

continuum simulations recapitulate the essential features of this behavior and shed light on

the underlying mechanism. We find that even though cells in peaks of an undulated front
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experience a stronger driving force given by the local nutrient gradient, the higher nutri-

ent levels they are exposed to saturate their cell-surface receptors, and hence they exhibit

a weaker chemotactic response than cells in valleys. That is, while variations in the nutri-

ent gradient along the leading edge of a front act to amplify undulations, variations in the

ability of cells to sense and respond to this gradient dominate and instead smooth out the

undulation. Importantly, this mechanism of smoothing is distinct from diffusion, which is

typically responsible for the smoothing of traveling waves in reaction-diffusion systems—

and in our case, is much too slow to drive smoothing.

4.3.1 Conditions for chemotactic smoothing to arise

While our study utilizes a specific form of the sensing function f(c) established for E.

coli 28,29, the phenomenon of chemotactic smoothing can manifest more generally. Specif-

ically, our description of smoothing requires that (i) convex regions of a population are ex-

posed to more nutrient c than concave regions, and (ii) f(c) is monotonically increasing and

concave, with f ′′(c)< 0; when these conditions are satisfied, the chemotactic response is

weaker at convex regions than at concave ones, thereby promoting smoothing (as indicated

in Fig. 4.4B).

The first requirement is frequently satisfied for collective migration in general; for ex-

ample, in chemotactic migration, nutrient concentration c decreases from the outward

boundaries into the population over a length scale given by the interplay between nutrient

diffusion and consumption. This first requirement is also satisfied by many other forms of

active matter that rely on other modes of sensing to collectively migrate, for which cwould
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generically represent the stimulus being sensed. Documented examples include durotactic

cell groups254–256, phoretic active colloids257–259, and phototactic robots186,260—systems

for which migration is directed toward regions of larger c, and therefore convex regions are

more likely to be exposed to larger c.

The second requirement is also satisfied for diverse active matter systems; in the context

of chemotaxis, specific examples include other bacteria203, enzymes187,261,262, aggregating

amoeba cells198, and mammalian cell groups during development, immune response, and

disease46,185,263–267. This second requirement is again also satisfied for active matter that col-

lectively migrates using other sensing mechanisms, for which sensing has been documented

to increase and eventually saturate with the stimulus, be it the stiffness of the underlying

surface254–256, temperature257–259, or light intensity186,260. Thus, exploring the physics

described here in diverse other forms of active matter will be a useful direction for future

work.

As a final illustration of the necessity of the sensing function f(c) to be concave, f ′′(c)

< 0, we repeat our analysis but instead consider a strictly linear f(c) = c/clin, which does

not saturate. We choose clin = (1/c− − 1/c+)−1 so that the linear f(c)matches our original

logarithmic f(c) at small c. With this linear sensing function, the chemotactic response is

independent of concentration, f ′(c) = 1/clin, and the condition of concavity is violated:

f ′′(c) = 0. We therefore expect chemotactic smoothing to not occur. Consistent with our

expectation, repeating the analysis underlying Fig. 4.4C but for the strictly linear f(c) yields

fronts for which valleys no longer move faster than peaks. Instead, as shown in Fig. 4.6, the

profile of chemotactic velocity is now inverted with respect to that of the bottom panel in

Fig. 4.4C. Hence, the front does not smooth. Overall, this sample computation illustrates

111



Figure 4.6: Chemotactic smoothing requires a concave sensing function f(c). To illustrate the necessity of a concave
sensing function with f ′′(c)< 0 for chemotactic smoothing, we repeat our analysis but for a strictly linear f(c) = c/clin
with clin = (1/c− − 1/c+)−1. In this case, the condition of concavity is violated: f ′′(c) = 0. We therefore expect
chemotactic smoothing to not occur. Top panel shows the x component of the nutrient gradient ∂xc (red, left axis)
and the response function f ′ (blue, right axis), and bottom panel shows the x component of the chemotactic velocity
vc,x = χf ′∂xc computed from these quantities, evaluated at different lateral positions y along the leading edge of the
front for this case of a strictly linear sensing function. In this case, we find that the valleys no longer move faster than
peaks—consistent with our expectation.

a way of modifying f(c) that abrogates sensing saturation and hence would prevent chemo-

tactic smoothing.

4.3.2 Broader implications of chemotactic smoothing

The chemotactic smoothing process described here is autonomous, arising without any

external intervention. Instead, it is a population-scale consequence of the limitations in

cellular signal transduction—motivating future studies of other population-scale effects,

beyond smoothing, that may emerge from individual behaviors. Indeed, while studies of

chemotaxis typically focus on the role of the external nutrient gradient in driving cellular

migration, our work highlights the distinct and pivotal role played by the cellular chemo-
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tactic response function in regulating migration and large-scale population morphology

more broadly. Our work therefore contributes a new factor to be considered in descrip-

tions of morphogenesis, which thus far have focused on the role of other factors—such as

differential forcing by signaling gradients, differential proliferation, intercellular mechan-

ics, substrate interactions, and osmotic stresses246–251,264,268–275—in regulating the overall

morphology of cellular communities and active matter in general.

4.4 Methods

4.4.1 Implementation of numerical simulations

The details of the model given in §2.4.2 also apply to Chapter 4. We now highlight the

changes made to the model described in §2.4.3 to accommodate the modified geometry of

the system. While the experimental geometry of undulating patterns in Chapter 4 is three

dimensional, in Chapter 2, we found that radial and out of plane effects do not need to

be considered to capture the essential features of bacterial front formation and migration.

Thus, for simplicity, we use a 2D representation. In the x direction (coordinates defined in

Figs. 4.2 and 4.4), no flux boundary conditions are used at the walls of the simulated region

for both field variables b and c. In the y direction, no flux boundary conditions are used af-

ter one wavelength of the undulation, peak to peak, which comprises a single repeatable

unit. The initial cylindrical distribution of cells 3D printed in the experiments has a diam-

eter of∼ 100 μm; so, in the x dimension of the numerical simulations, we use a Gaussian

with a 100 μm full width at half maximum for the initial bacteria distribution b(x, t = 0),

with a peak value that matches the 3D printed cell density in the experiments, 0.95 × 1012

cells/mL. We vary the center x position of the Gaussian distribution sinusoidally along y
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to reproduce a given experimental wavelength and amplitude. Experimental wavelengths

were measured directly from confocal images and rounded to the nearest 10 μm. The initial

condition of nutrient is c= 10 mM everywhere, characteristic of the liquid media used in

the experiments. The initial nutrient concentration is likely lower within the experimental

population initially due to nutrient consumption during the 3D printing process; however,

we expect this discrepancy to play a negligible role as nutrient deprivation occurs rapidly in

the simulations.

For the first and second derivatives in space, we use finite difference equations with cen-

tral difference forms in 2D. Time steps of the simulations are 0.01 s and spatial resolution

is 10 μm. Because the experimental chambers are 3.5 cm in diameter, we use a distance of

3.5 × 104 μm for the size of the entire simulated system in the x direction with the cells

initially situated in the center. Our previous work163 demonstrated that the choice of

discretization does not appreciably influence the results in numerical simulations of flat

fronts; furthermore, our new results for the simulations performed here (Fig. 4.7) indicate

that our choice of discretization used is sufficiently finely-resolved such that the results in

numerical simulations of undulated fronts are not appreciably influenced by discretization.

4.4.2 Characterizing simulated front dynamics

For the analysis shown in Fig. 4.2, the leading edge is defined as the locus of positions at

which b falls below a threshold value equal to 10−4 times the maximum cell density of the

initial bacterial distribution, as in163. For the analysis shown in Fig. 4.4, to more accurately

track the leading edge of the front, we define it as the locus of positions at which b falls

below a threshold value specific to each condition tested; the threshold is 0.003 cells per
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Figure 4.7: Convergence of the numerical simulations. To assess the influence of discretization, we repeat the simulation
for the prototypical case of ξ= 1.7 μm and λ= 0.8 mm with different choices of the spatial discretization Δx and
measure the smoothing time τ. In all cases we find qualitatively similar results, although the dynamics vary; however, as
shown by the green data points, the dynamics do not appreciably change for discretization smaller than≈ 10 μm, which
is the value used in the main text simulations, as indicated by the blue star.

μm3 for the prototypical case of ξ= 1.7 μm and λ= 0.8 mm shown in Fig. 4.4A-C, as well

as all simulations for ξ= 2.2 μm; 0.002 cells per μm3 for simulations for ξ= 1.7 μm and

λ= 2.0 and 3.2 mm; and 0.001 cells per μm3 for simulations for ξ= 1.2 μm and λ= 0.8

mm. We note that the b-dependence of the motility parametersDb and χ does not play an

appreciable role in our analysis of smoothing, since the definition used for the leading edge

of each front is at a fixed, low value of b.

4.4.3 Robustness of front smoothing

One may speculate that smoothing could be avoided or even reversed by lowering the initial

nutrient concentration to a value in between c+ and c−, thereby diminishing the difference

in chemotactic response between peaks and valleys and allowing the amplifying effects of

the nutrient gradient to dominate. However, a simulation performed with a much lower

initial nutrient concentration of 10 μM throughout, chosen to be in between c+ and c−,

does not even form a traveling front at all over the experimental time scale (Movie S7 in
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the online version of243). This absence of a front is due to the reduction in nutrient con-

sumption as modulated by the Monod function g(c), which results in a drastic reduction

in the nutrient gradient that drives front formation and propagation. Thus, despite vary-

ing the initial nutrient concentration over three orders of magnitude, the upper limit c+

over an order of magnitude, and the migration parametersDb and χ over an order of mag-

nitude, we have not found conditions under which chemotactic fronts, if they form, do not

smooth. Smoothing therefore appears to be robust to large changes in the environmental

conditions.
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5
Microbial mutualism generates multistable

and oscillatory growth dynamics

5.1 Introduction

Chapters 2-4 described the growth and motility of a single bacterial population in response

to chemical gradients formed by that same population. However, as described in Chapter
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1, one bacterial population often interacts with another through their shared chemical en-

vironment. Although these interactions are often mutually beneficial, simple models for

describing experimentally observed non-linear phenomena in such systems are lacking. As

detailed in Chapter 1, these phenomena include bistability and oscillations in the growth

dynamics of two species systems. Below, we formulate a minimal model that captures the

essential features of mutualistic metabolic coupling that can produce both bistability and

oscillations under conditions similar to the experimental works previously mentioned71,96.

We extract useful nondimensional parameters from our model and solve the steady state

form of the system of equations, allowing us to map out the state space of input conditions

where both cell types can or cannot coexist. By doing so, we identify what role metabolic

sharing plays in determining the boundaries of these regimes within the state space. Thus,

our results help to provide quantitative and generalizable principles to guide future work

studying microbial mutualists.

5.2 Methods

5.2.1 Development of the governing equations

As an illustrative and well-characterized71,72,96,158 example, we consider the model two-

species microbial community schematized in Fig. 5.1a(ii). This community is a mixture

of aerobes (red in Fig. 5.1) and anaerobes (dark blue), whose metabolism and growth are

This chapter has been adapted from “Microbial mutualism generates multistable and oscillatory growth
dynamics”, byDaniel B. Amchin, AlejandroMartínez-Calvo, and Sujit S. Datta, submitted, Biophysical
Journal (2022). Author Contributions: D.B.A. and S.S.D. designed the model; D.B.A. and S.S.D. designed
the numerical simulations and theoretical analysis; D.B.A. performed all numerical simulations and theoret-
ical analysis; D.B.A., A.M., and S.S.D. analyzed the data; S.S.D. designed and supervised the overall project.
D.B.A. and S.S.D. discussed the results and implications and wrote the manuscript.
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either promoted or instead suppressed in oxygenated environments, respectively. The bac-

teria are described by a number concentration bwith subscripts aer and an for aerobes and

anaerobes, respectively. Genome sequencing and metabolic profiling of such communi-

ties indicate that the consumption and secretion of only a small number of metabolites

often drives experimental outcomes72–74,76,82,276—providing a clue that the full network

of metabolic interactions could be dramatically simplified while still generating realistic

community behaviors. Hence, inspired by71, we focus on the case in which the anaerobes

take up an exogenously-supplied complex carbohydrate (teal) that cannot be accessed by

the aerobes, breaking it down into simple sugar molecules (green) that they either directly

consume for their growth or liberate to be consumed by the entire microbial community;

for simplicity, we do not consider any other compounds, such as short-chain fatty acids,

that may also liberated upon carbohydrate breakdown. The aerobes consume oxygen

(magenta)—thereby providing favorable conditions for the anaerobes—while also con-

suming liberated simple sugar to utilize for their own growth. To examine the complex

phenomena that can emerge in this model community, and to develop biophysical princi-

ples that can describe these phenomena, here we mathematically describe these mutualistic

interactions by building on the framework of consumer-resource models commonly used

in ecology80,107,124,276.

Reactor configuration. In particular, we consider these coupled chemical and bac-

terial dynamics in the well-defined environment of a continuously-stirred tank reactor

(CSTR)71,96, as shown in Fig. 5.1a(i); because all chemical and bacterial species are well-

mixed, their concentrations are only functions of time, not space, in our model. In this

configuration, a liquid feed flow containing dissolved complex carbohydrate at a concen-
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Figure 5.1: Model community of aerobes and anaerobes with mutualistic metabolic interactions exhibits two stable
states, with bistable and oscillatory transitions between them driven by changing nutrient and oxygen fluxes. a(i) We
consider a continuously‐stirred tank reactor containing a well‐mixed liquid culture of aerobes, anaerobes, dissolved oxy‐
gen, complex carbohydrate (labeled as complex sugar for brevity), and simple sugar. A liquid feed flow enters the reactor
with dissolved complex carbohydrate and simple sugar, along with oxygen gas maintained at a constant partial pressure
in the head space above the liquid. The rates of liquid outflow and inflow are matched, maintaining a constant liquid
volume in the reactor. a(ii) Schematic of the mutualistic interactions between bacteria. Anaerobes take up complex
carbohydrate and degrade it to simple sugar, some fraction of which is utilized solely by anaerobes, and the remainder
of which is liberated to be shared by both anaerobes and aerobes for their growth. Aerobes consume oxygen, which
inhibits (enhances) anaerobe (aerobe) activity. b–d show the results of an exemplary numerical simulation of our model
with intermediate nutrient sharing (Ξ= 0.5) and oxygen abundance δ= 3.9× 10−3, using parameter values that are
representative of experiments as given in Table 5.2. The composition of the incoming feed is given in b; to examine the
influence of changing carbon fluxes, we progressively increase (ramp up) and then decrease (ramp down) the concen‐
tration of simple sugar in the feed. The resulting changes on the concentration of cells and chemicals in the reactor are
given in c and d, respectively. Initially, the community is in the aerobes‐only (AO) state (I), then abruptly transitions (II) to
a state in which aerobes and anaerobes coexist (C, III–VI). Upon ramping down the simple sugar feed concentration, the
C state persists, indicating hysteresis in the transitions between states. Further decreasing the simple sugar feed con‐
centration gives rise to oscillations in the bacterial and chemical concentrations (magnified views to the right) before the
community ultimately transitions back to the AO state (VII). All quantities are given in dimensionless form indicated by
tildes; we rescale {t, x, s, o, ban, baer} by the characteristic quantities {γ−1

aer , xfeed, xfeedNΞ, xfeedNΞ(κo,aer,max/κs,aer),
xfeed(γaer/κx,an), xfeedNΞ(γaer/κs,aer)} as detailed in the text.

tration xfeed and simple sugar at sfeed enters the reactor at a fixed volumetric flow rate; in

general, we use x and s to describe the number concentrations of complex carbohydrate
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and simple sugar in the reactor, respectively. The temperature and oxygen partial pres-

sure in the head space of the reactor are held constant, thereby prescribing the saturation

concentration of oxygen in the reactor liquid osat; hence, the dissolved molecular oxygen

concentration o changes at a rate γo(osat − o), where γo is the transfer rate coefficient71. The

well-mixed liquid in the reactor exits at the same flow rate so as to maintain a constant in-

ternal volume. The flow rate divided by reactor volume then defines the dilution rate γd

at which cells and carbon sources are refreshed to their feed flow quantities. We take γd ≪

γo; therefore, oxygen transfer is rapid and we do not include γd in our equation describing

oxygen dynamics. We also take the feed concentration of cells to be zero, and so, cells must

grow within the reactor to avoid being diluted to a vanishing concentration and “washing

out”.

Complex carbohydrate uptake. The anaerobes take up the exogenously-supplied com-

plex carbohydrate at a rate banκx,angx,an(x)[1− go,an(o)], where κx,an describes the maximum

uptake rate per cell. In general, the Michaelis-Menten function gm,i(m)≡m/(m+m1/2,i)

quantifies the concentration dependence of the uptake of a substratem ∈ {o, x, s} by

species i ∈ {an, aer} relative to the characteristic concentrationm1/2,i
28,45,211–214,226. Thus,

the uptake rate increases and eventually saturates with increasing concentration of the com-

plex carbohydrate, mediated by the availability of anaerobic conditions at o≲ o1/2,an 124.

Consumption of simple sugar and oxygen. The anaerobes then break down the com-

plex carbohydrate into simple sugar, a fraction Ξ of which are liberated by the anaerobes as

a “common good” to be equally shared by all members of the microbial community, while

the remaining 1− Ξ are instead utilized solely by the anaerobes for their growth71,80. Thus,

we describe the rate at which the anaerobes liberate simple sugar byNΞbanκx,angx,an(x)[1 −
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go,an(o)], where the degree of polymerizationN> 1 quantifies the number of simple sugar

units liberated from a complex carbohydrate molecule. The anaerobes and aerobes then

consume the simple sugar at total rates banκs,angs,an(s)[1−go,an(o)] and baerκs,aergs,aer(s)go,aer(o),

respectively; here, κs,an and κs,aer describe the maximum consumption rates per cell. Oxy-

gen is concomitantly consumed by the aerobes at a rate baerκo,aer(s)go,aer(o), where the con-

sumption rate per cell depends on carbon availability111,277, and takes the form κo,aer(s)

≡ κo,aer,min + (κo,aer,max − κo,aer,min)gs,aer(s); this function interpolates between the basal

consumption rate in starved conditions, κo,aer,min, and the maximum consumption rate

in sugar-replete conditions, κo,aer,max. While we take κo,aer,min > 0 as is often the case, our re-

sults are unaltered if instead we take κo,aer,min = 0 (Fig. 5.2). Conversely, choosing κo,aer,min

= κo,aer,max, which completely removes the dependence of oxygen consumption by aerobes

on simple sugar availability, influences some of the emergent community behavior (Fig.

5.5) as expected, as described further below.

Bacterial growth. Simple sugar consumption then results in cellular growth. The rate

at which anaerobe concentration increases has a contribution from the consumption of

non-shared sugars,N(1− Ξ)banγangx,an(x)[1− go,an(o)], and another contribution from the

consumption of liberated simple sugar that is shared among all bacteria, banγangs,an(s)[1 −

go,an(o)]; here, γan is the maximal cellular growth rate per unit simple sugar. Conversely,

the rate at which aerobe concentration increases only reflects the consumption of shared

simple sugar, baerγaergs,aer(s)go,aer(o), where again γaer is the maximal cellular growth rate

per unit simple sugar. This formulation of our model treats oxygen as a joint mediator of

both aerobic and anaerobic metabolism of the sugar, albeit in opposing ways; an alternative

formulation that instead employs Liebig’s law of the minimum, wherein growth is set solely
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by the scarcest of the two (oxygen or sugar) yields identical results, as shown in Fig. 5.3.

Figure 5.2: Our findings of bistability and oscillations are unchanged if the minimum oxygen consumption rate by
aerobes is set to zero. While our main text results take κo,aer,min > 0 as is often the case, setting κo,aer,min = 0 yields
nearly identical results, as shown in the Figure above, which corresponds to Fig. 5.1.
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Figure 5.3: Our findings of bistability and oscillations are unchanged upon incorporating Liebig’s law of the minimum.
For simplicity and to make our model more generally applicable to other mediators of microbial metabolism (e.g., pH,
signaling molecules, toxins), we take oxygen as a joint mediator of carbon metabolism. Alternatively incorporating
Liebig’s law of the minimum, wherein the scarcest of the two (oxygen or sugar) determines growth rate and the uptake
rate of the non‐limiting of the two, yields identical results as shown above (identical simulation as in Fig. 5.1 but with
Liebig’s law). For this formulation, we define a function gaer(o, s)≡min{gs,aer(s), ωgo,aer(o)}, where ω= 6 is the
utilization ratio that corresponds to the oxygen molecules required to fully utilize one glucose monomer111. Then, we
replace κo,aer(s)go,aer(o) with κo,aer,maxgaer(o, s) in Eq. 5.3 and gs,aer(s)go,aer(o) with gaer(o, s) in Eqs. 5.2 and 5.5.
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Governing equations. Our model is thus summarized as:

Complex carbohydrate :
dx
dt

= γdxfeed︸ ︷︷ ︸
Inflow

− γdx︸︷︷︸
Outflow

− banκx,angx,an(x)[1− go,an(o)]︸ ︷︷ ︸
Anaerobe uptake of x

, (5.1)

Simple sugar :
ds
dt

= γdsfeed︸ ︷︷ ︸
Inflow

− γds︸︷︷︸
Outflow

+NΞbanκx,angx,an(x)[1− go,an(o)]︸ ︷︷ ︸
Anaerobe liberation of s

(5.2)

− banκs,angs,an(s)[1− go,an(o)]︸ ︷︷ ︸
Anaerobe consumption of s

− baerκs,aergs,aer(s)go,aer(o)︸ ︷︷ ︸
Aerobe consumption of s

,

Oxygen :
do
dt

= γo(osat − o)︸ ︷︷ ︸
Influx at liquid interface

− baerκo,aer(s)go,aer(o)︸ ︷︷ ︸
Aerobe consumption of o

, (5.3)

Anaerobes :
dban
dt

= − γdban︸︷︷︸
Outflow

+N(1− Ξ)banγangx,an(x)[1− go,an(o)]︸ ︷︷ ︸
Growth from non−shared s

(5.4)

+ banγangs,an(s)[1− go,an(o)]︸ ︷︷ ︸
Growth from shared s

,

Aerobes :
dbaer
dt

= − γdbaer︸ ︷︷ ︸
Outflow

+ baerγaergs,aer(s)go,aer(o)︸ ︷︷ ︸
Growth from s

, (5.5)

where t represents time.
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5.2.2 Characteristic dimensionless parameters

Non-dimensionalizing Eqs. 5.1–5.5 yields useful dimensionless parameters characterizing

the biological, chemical, and physical dynamics underlying this complex system. In par-

ticular, we choose to rescale {t, x, s, o, ban, baer} by the characteristic quantities {γ−1
aer , xfeed,

xfeedNΞ, xfeedNΞ(κo,aer,max/κs,aer), xfeed(γaer/κx,an), xfeedNΞ(γaer/κs,aer)} that describe the

aerobe doubling time, feed concentration of complex carbohydrate, concentration of lib-

erated simple sugar from this feed, corresponding concentration of consumed oxygen, cor-

responding concentration of newly-grown anaerobes, and corresponding concentration of

newly-grown aerobes, respectively. We also rescale κo,aer(s) by κo,aer,max. This process yields

the non-dimensional equations:

Complex carbohydrate :
dx̃
d̃t

= γ(1− x̃)− b̃ang̃x,an(x̃)[1− g̃o,an(õ)], (5.6)

Simple sugar :
d̃s
d̃t

= γ(βΞ−1 − s̃) + b̃ang̃x,an(x̃)[1− g̃o,an(õ)] (5.7)

−αΞ−1b̃ang̃s,an(̃s)[1− g̃o,an(õ)]− b̃aerg̃s,aer(̃s)g̃o,aer(õ),

Oxygen :
dõ
d̃t

= κ(δΞ−1 − õ)− b̃aerκ̃o,aer(̃s)g̃o,aer(õ), (5.8)

Anaerobes :
db̃an
d̃t

= −γb̃an +N(1− Ξ)λb̃ang̃x,an(x̃)[1− g̃o,an(õ)] (5.9)

+λb̃ang̃s,an(̃s)[1− g̃o,an(õ)],
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Aerobes :
db̃aer
d̃t

= −γb̃aer + b̃aerg̃s,aer(̃s)g̃o,aer(õ), (5.10)

where the tildes indicate non-dimensionalized variables. Seven dimensionless parameters

emerge:

• The anaerobic uptake parameter α≡ κs,an/(κx,anN) compares the anaerobic carbon

uptake rates of simple sugar and complex carbohydrates. When α> 1, anaerobe up-

take of simple sugar is faster than that of complex carbohydrates, whereas when α

< 1, anaerobe uptake of complex carbohydrates dominates. As shown in Table 5.1,

typical experiments can fall in either regime.

• The simple sugar abundance parameter β≡ sfeed/(xfeedN) compares the abundance

of simple sugar in the feed with that contained in the complex carbohydrate in the

feed. When β> 1, carbon enters the system predominantly in the form of simple

sugar, whereas when β< 1, carbon enters the system predominantly in the form of

complex carbohydrates. As shown in Table 5.1, typical experiments fall in this latter

regime.

• The aerobic washout parameter γ≡ γd/γaer compares the rates of aerobic growth and

dilution. When γ> 1, aerobes are diluted from the reactor faster than they can grow,

leading to their washout, whereas when γ< 1, aerobic growth is sufficiently fast for

them to remain in the reactor. As shown in Table 5.1, typical experiments fall in this

latter regime.

• The oxygen abundance parameter δ≡ (osat/κo,aer,max)/(xfeedN/κs,aer) compares the

time needed for aerobes to deplete oxygen from the saturated influx with the time
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needed for them to deplete the quantity of simple sugar contained in the feed of

complex carbohydrate. When δ> 1, depletion of oxygen by the aerobes is slow com-

pared to that of simple sugar, whereas when δ< 1, oxygen is rapidly depleted by

aerobic consumption. As shown in Table 5.1, typical experiments fall in this latter

regime.

• The oxygen transfer parameter κ≡ γo/γaer compares the rates of oxygen influx and

aerobic growth. When κ> 1, the oxygen supply is rapidly replenished to its satu-

ration concentration osat, whereas when κ< 1, oxygen influx is slow. As shown in

Table 5.1, typical experiments fall in the former regime.

• The growth parameter λ≡ γan/γaer compares the rates of anaerobic and aerobic

growth. When λ> 1, anaerobes can growmuch faster than aerobes, whereas when λ

< 1, aerobic growth dominates. As shown in Table 5.1, typical experiments can fall

in either regime.

• The oxygen consumption parameter ε≡ κo,aer,min/κo,aer,max compares the minimum

and maximum oxygen consumption rates by aerobes under nutrient-depleted or

nutrient-replete conditions, respectively. When ε= 1 (its maximal value, by defini-

tion), oxygen consumption by aerobes does not depend on simple sugar availability,

whereas when ε≪ 1 oxygen consumption is strongly dependent on simple sugar

levels. As shown in Table 1, in this work, we consider both limits for generality.

Our overarching goal is to address the question: For a given microbial community, how does

changing the balance of carbon and oxygen fluxes alter its overall composition? To this end,
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in what follows, we use the model summarized by Eqs. 5.6–5.10 to explore the influence of

varying β and δ, keeping all other parameters constant.

Parameter Name Values References
Ξ Shared fraction 0 to 1 71,74,82,162,276

N Degree of polymerization 100 to 102 71,74,82,162,276

α ≡ κs,an/(κx,anN) Anaerobic uptake 0 to 101 71,82,158,162

β ≡ sfeed/(xfeedN) Simple sugar abundance 0 to 100 71,72,74,76,82,158,162,278,279

γ ≡ γd/γaer Aerobic washout 0 to 100 29,71,72,74,158,162,278,279

δ ≡ (osat/κo,aer,max)/(xfeedN/κs,aer) Oxygen abundance 10−3 to 10−1 71,111,158,277

κ ≡ γo/γaer Oxygen transfer 101 to 102 29,71

λ ≡ γan/γaer Growth 0 to 101 74,82,124,276,278,279

ε ≡ κo,aer,min/κo,aer,max Oxygen consumption 0 to 100 See Fig. 5.5

Table 5.1: Dimensionless parameters characterizing our model. Also listed are ranges of their values reported in previous
studies.

5.2.3 Implementation of numerical simulations

First, to explore the influence of varying simple sugar abundance, we systematically vary

sfeed (which varies β) and use numerical simulations of Eqs. 5.6–5.10 to examine the result-

ing variations in the complex carbohydrate, simple sugar, oxygen, aerobe, and anaerobe

concentrations in the reactor, represented by the non-dimensional variables x̃, s̃, õ, b̃aer, b̃an,

respectively. We keep all the other input parameters constant at their representative exper-

imental values as given in Table 5.2. Then, to explore the additional influence of varying

oxygen depletion, we also vary osat (which varies δ) and examine the resulting variations

in chemical and bacterial concentrations. Finally, to investigate the pivotal influence of

metabolic mutualism, we examine these behaviors for different values of the sharing param-

eter Ξ, ranging from a high value of 0.9 representing “altruistic” liberation of sugars by the
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anaerobes to a low value of 0.1 representing “greedy” utilization of sugars by the anaerobes.

To do so, we use the ode23t solver in MATLAB, initializing each simulation with low aer-

obe and anaerobe concentrations baer,0 and ban,0 chosen to be≈ 0.3 and≈ 10−3 times

smaller than the characteristic concentrations {xfeed(γaer/κx,an), xfeedNΞ(γaer/κs,aer)} (Ta-

ble 5.2), matching the experiments in71. The initial time step is 10−15 s, chosen to be> 1018

times smaller than the characteristic time scale γ−1
aer . The solver then varies the time step

dynamically to ensure a relative error tolerance of 10−4 for all quantities or absolute error

tolerances of 107 cells/mL and 10−6 µM for cells and chemicals, respectively; these tolerance

values are chosen to be≈ {50, 400} and≈ {60, 3000, 1600} times smaller than the char-

acteristic concentrations {xfeed(γaer/κx,an), xfeedNΞ(γaer/κs,aer)} (cells) and {xfeed, xfeedNΞ,

xfeedNΞ(κo,aer,max/κs,aer)} (chemicals), respectively. For each distinct {β, δ} condition ex-

plored, we then solve Eqs. 5.6–5.10 for a duration of Δt̃= 70 to match71 (Fig. 5.1) or Δt̃=

280 (Figs. 5.6 and 5.7) to ensure we reach a (possibly dynamic) steady state, using the final

state of the preceding condition to initialize the next with a new value of β, representing

a change in the influx of fresh simple sugar into the reactor. Furthermore, as in71, we also

employ a “reinoculation protocol” in which if either {baer, ban} drops below the low ini-

tial concentrations {baer,0, ban,0} at the end of a given simulation condition, we reset them

to those initial values at the beginning of the next simulation condition tested to prevent

irreversible washout of cells from the reactor.
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Parameter Value in Fig. 5.1 Value in Fig. 5.6 Value in Fig. 5.7 References
Ξ 0.5 0.1, 0.5, 0.9 71

N 100 71

Δt 50 h 200 h 200 h 71

osat 13 µM 1.8 to 23 µM 71

xfeed 60 µM 71

sfeed 0.5 to 7 mM 71

baer,0 1.7× 108 cells/mL 71

ban,0 5.0× 106 cells/mL 71

Initial s 0 71

Initial o 18 µM
Initial x 60 µM 71

o1/2,aer 1 µM 29

o1/2,an 0.35 µM 71

x1/2,an 8 µM 71

s1/2,aer 0.05 µM 71

s1/2,an 1.4 mM 71

κo,aer,max 1.2×10−12 mM (cells/mL)−1 s−1 29

κo,aer,min 3.3×10−14 mM (cells/mL)−1 s−1 111,277

κx,an 6.7×10−15 mM (cells/mL)−1 s−1 71

κs,aer 2.2×10−12 mM (cells/mL)−1 s−1 71

κs,an 9.1×10−13 mM (cells/mL)−1 s−1 71

γaer 1.4 h−1 111

γan 0.05 h−1 ∗ see caption
γo 47.4 h−1 71

γd 0.2 h−1 71

Ξ 0.5 0.1, 0.5, and 0.9
N 100
α 1.4
β 0.083 to 1.2
γ 0.14
δ 0.0039 0.00056 to 0.0072
κ 34
λ 0.036
ε 0.029
õ1/2,aer 6.2× 10−4

õ1/2,an 2.2× 10−4

x̃1/2,an 0.13
s̃1/2,aer 1.7× 10−5

s̃1/2,an 0.47

Table 5.2: Parameter values used in our simulations. Upper and lower tables show dimensional and corresponding
dimensionless parameters, respectively. Values not listed are the same as in Fig. 5.1.
∗ This value was chosen to be much lower than the aerobic growth rate, while still being non‐zero.



5.3 Results

5.3.1 Chemical and bacterial dynamics under varying simple sugar abundance

How do variations in simple sugar abundance alter the composition of the overall microbial

community? And are these alterations history dependent, as is often observed in experi-

ments? To answer these questions, we first investigate the coupled chemical and bacterial

dynamics quantified by Eqs. 5.6–5.10 that emerge upon successive variations in the feed

simple sugar concentration sfeed (i.e., varying β) for an exemplary case of Ξ= 0.5 andN=

100. In particular, as shown in Fig. 5.1b, we hold the feed concentrations of oxygen (ma-

genta) and complex carbohydrate (teal) constant, and successively increase sfeed (green, in-

creasing β) step-wise every Δt̃= 70 (“ramp up”). To investigate any possible history depen-

dence, we then “ramp down” by successively decreasing sfeed (decreasing β) step-wise by the

same amount. The resulting concentrations of cells and chemicals in the reactor are shown

in Figs. 5.1c–d, respectively.

The aerobes-only state. During the initial phase of the ramp up period (0≤ t̃≤ 490,

denoted by I in Fig. 5.1c), oxygen consumption by the aerobes is insufficient to sustain

anaerobic growth (dark blue, Fig. 5.1c). As a result, the microbial community is in the

aerobes-only (AO) state in which solely aerobes consume the supplied simple sugar (green,

Fig. 5.1d) and utilize it for their growth; the concentration of complex carbohydrate (teal)

remains unchanged, since this is only taken up by anaerobes. In this state, with each succes-

sive increase in simple sugar abundance β, the aerobe concentration exponentially reaches

a new steady-state value (red, Fig. 5.1c). The oxygen concentration concomitantly ap-

proaches progressively decreasing steady-state values due to aerobic consumption (magenta,
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Fig. 5.1d). For clarity of notation, we denote long-time steady-state values of chemical and

bacterial concentrations by the subscript s hereafter.

Coexistence and hysteresis. As the concentration of aerobes rises with increasing sim-

ple sugar abundance β, the oxygen concentration in the reactor eventually decreases enough

to sustain anaerobic growth as well—as shown by the drop in the magenta line just before t̃

≈ 560 in Fig. 5.1d. Consequently, the anaerobe concentration increases dramatically (dark

blue, Fig. 5.1c); we denote this transition by II.

As the anaerobes proliferate, they take up the exogenously-supplied complex carbohy-

drate (teal, Fig. 5.1d) and continually liberate new simple sugar to be shared by the entire

microbial community (Fig. 5.4). Despite the low oxygen concentration in the reactor, aer-

obes can also proliferate, albeit with lowmetabolic activity. Hence, these carbon-replete

conditions give rise to the coexistence (C) state (560< t̃≤ 980, denoted by III in Fig. 5.1c).

Both aerobes (red) and anaerobes (dark blue) are maintained at nearly constant concentra-

tions, buffered against subsequent changes in the feed simple sugar supply.

Figure 5.4: Dynamics of simple sugar sharing by the anaerobes. The shared flux of simple sugar is given by b̃ang̃x,an(x̃)[1
− g̃o,an(̃o)] (the second term in Eq. 5.7) and is shown for the simulation in Fig. 5.1. On the right, we show a magnified
view of the oscillatory dynamics immediately before the transition from the C to AO states.

Indeed, the coexistence state also persists as the simple sugar abundance β is ramped

down (980< t̃≤ 1610, denoted by IV in Fig. 5.1c). Strikingly, we observe hysteretic be-
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havior: the chemical and bacterial concentrations during the ramp down do not mirror

those of the ramp up period—as observed experimentally as well71. For example, the coex-

istence state persists over a broader range of simple sugar abundance β, including at values

that were too low to initiate coexistence during ramp up; see, for example, 1400< t̃≤ 1680

in Fig. 5.1c–d. Having established a mutually-beneficial state, this mixed microbial com-

munity continues to coexist, despite the decreasing levels of exogenously-supplied simple

sugar.

Oscillatory dynamics. Further decreasing the simple sugar abundance β leads to a new

mode of coexistence. Surprisingly, we observe sustained oscillations in both chemical and

bacterial concentrations (1610< t̃≤ 1750, denoted by V in Fig. 5.1c)—again recapitulating

some experimental observations96. The concentrations of both aerobes and anaerobes rise

and fall in phase (magnified view to the right of Fig. 5.1c). The chemical concentrations

correspondingly switch between metastable conditions resembling the coexistence state

with low oxygen, but high simple sugar availability, and the aerobes-only state with high

oxygen, but low simple sugar availability (Fig. 5.1d, right).

These complex dynamics again reflect the central role of microbial mutualism. In the

low-oxygen metastable state, anaerobes can take up complex carbohydrate (teal) and lib-

erate new simple sugar molecules that are utilized by the entire community (e.g., rise in

the green line at t̃≈ 1743). Then, as the complex carbohydrate is increasingly depleted by

the anaerobes, less simple sugar is liberated (Fig. 5.4) and available for the community to

use (drop in the green line for 1743≲ t̃≲ 1744). Because oxygen consumption depends

on carbon availability, aerobic consumption of oxygen becomes concomitantly limited—

eventually driving an abrupt transition to the high-oxygen metastable state (e.g., rise in the
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magenta line at t̃≈ 1744). Under these conditions, anaerobic metabolism is impeded but

not completely abrogated, enabling the concentration of complex carbohydrate to grad-

ually be replenished (teal, 1744< t̃< 1746) and broken down into shared simple sugar.

Thus, the amount of shared simple sugar concomitantly increases (Fig. 5.4), enabling the

aerobes to increasingly deplete oxygen (magenta, 1744< t̃< 1746)—eventually driving an-

other abrupt transition back to the low-oxygen state (̃t≈ 1746) in which anaerobic growth

is sustained again. Indeed, removing the dependence of oxygen consumption by aerobes

on simple sugar availability abolishes the oscillations entirely (Fig. 5.5)—providing further

confirmation of this picture.

Transition back to the aerobes-only state. Further decreasing the simple sugar abun-

dance β eventually causes the high-oxygen state to dominate—leading to a precipitous de-

cline in the concentration of anaerobes (1750≤ t̃≤ 1820, denoted by VI in Fig. 5.1c). The

community thus transitions back to the AO state denoted by VII in Fig. 5.1c.

Taken together, these results (Fig. 5.1b–d) highlight the rich chemical and bacterial be-

haviors that emerge from our minimal model of metabolic mutualism. Remarkably, de-

spite the simplicity of the model compared to those that consider a more complex network

of metabolic fluxes, it successfully recapitulates the two different states observed in experi-

ments upon varying carbon and oxygen fluxes71: the aerobes-only (AO) state and the state

of aerobe-anaerobe coexistence (C). Our model also recapitulates the hysteretic nature of

transitioning between these two states71 as well as the possible emergence of oscillations be-

tween them96, as observed in many experiments. Having recapitulated these behaviors, we

next set out to uncover the underlying biophysical principles that govern them.
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Figure 5.5: Removing the dependence of oxygen consumption by aerobes on carbon availability eliminates oscillatory
growth dynamics and yields simulations that closely match prior metabolic model predictions. (i) Results of the identical
simulation as in Fig. 5.1, but with κo,aer,min = κo,aer,max (ε= 1). In this case, because oxygen is depleted more rapidly,
the coexistence state arises earlier and persists over the entire range of β that is subsequently explored. Because this
range of β does not induce a transition from coexistence (C) back to the aerobes‐only (AO) state, oscillations (which
arise during this transition as shown in Fig. 5.1) do not have the chance to occur. To further probe this behavior, in (ii)
we increase the value of oxygen inflow concentration to 43 µM (δ of 0.014), which induces the transition from the
C to AO states. Nevertheless, in this case, oscillations still do not occur, indicating that the dependence of oxygen
consumption on carbon availability is necessary for the oscillatory dynamics observed in Fig 5.1 to arise. Notably, (ii)
indicates that the concentration of aerobes continually increases with β in the coexistence regime (̃t= 600 to 1000)
in this case, as was also observed in 71; moreover, the regime over which bistability persists corresponds closely to the
results of the more sophisticated metabolic modeling in71.

5.3.2 Biophysical principles governing the different states and transitions

between them

To summarize the findings in Fig. 5.1, we plot the steady-state bacterial concentrations baer,s

and ban,s for the different values of simple sugar abundance β tested in Fig. 5.6a–b; the cor-

responding steady-state concentrations of oxygen, complex carbohydrate, and simple sugar

are shown in c–e. The circles show the results of the full numerical simulations, while the

136



curves show the results of the theoretical predictions developed hereafter. The filled circles

show the states that arise during the ramp up period (increasing β), while the open circles

show the ramp down period (decreasing β). As described in §5.3.1, the microbial commu-

nity is initially in the aerobes-only state with baer,s > 0 and ban,s = 0 (leftmost points in Fig.

5.6). As the simple sugar abundance β is increased, the aerobe concentration baer,s mono-

tonically increases (denoted by I in panel a) while the anaerobe concentration ban,s remains

negligible. Then, above a critical value of β= βaer,crit ≈ 0.6, the community abruptly tran-

sitions to the state of coexistence (II) with baer,s ≈ 1.85 and ban,s ≈ 1.75, independent of

subsequent increases in β (III). The reverse behavior is hysteretic upon ramping down: the

community persists in the coexistent state over a broader range of 1.2> β> 0.4 (IV), even-

tually exhibiting oscillatory dynamics (indicated by V and the undulating red line in panel

a). It then abruptly transitions back to the aerobes-only state as simple sugar abundance

decreases below a critical value β= βcoex,min ≈ 0.28 (VI–VII).

Having characterized these states and transitions between them, we next seek biophysical

principles that quantitatively determine the:

• Steady-state concentration baer,s in the AO state (I and VII),

• Critical value βaer,crit that determines the transition from the AO to C state (II),

• Steady-state concentrations baer,s and ban,s in the C state (III and IV),

• Critical value βcoex,min that determines the subsequent transition from the C to AO

state (VI).
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Figure 5.6: Phase space of microbial steady states. Panels a–b show the steady‐state aerobe and anaerobe concentra‐
tions at each value of the simple sugar abundance β for the simulation shown in Fig. 5.1; the corresponding steady‐state
chemical concentrations are given in panels c–e. Filled and open circles show ramp up (increasing β) and ramp down
(decreasing β), respectively. Red and blue curves show the analytical solutions predicted by our theory (Eqs. 5.11–5.15);
solid and dashed lines indicate the stable and unstable states, respectively. Initially the microbial community is in the
aerobes‐only (AO) state (I), and then transitions (II) to the coexistence (C) state (III) above β= βaer,crit ≈ 0.6. Upon
ramping down, the community persists in the C state (IV) over a broader range of β, indicating hysteretic behavior. It
eventually exhibits oscillations (V) and then transitions (VI) back to the AO state (VII) below β= βcoex,min ≈ 0.28.
Inset to c shows the amplitude of oscillations in oxygen concentration just near the onset of oscillatory dynamics, in the
narrow region indicated by the small black box in the main panel; the oscillation amplitude displays a hysteresis loop
characteristic of a subcritical Hopf bifurcation, with the grey line indicating zero amplitude for clarity. The overlying bar
indicates monostable AO, bistable AO and C, and monostable C regimes demarcated by the critical values βcoex,min and
βaer,crit. Black arrows indicate the direction of transitions between states. All input parameters are the same as in Fig.
5.1 except Δt̃= 280, which is longer to ensure that simulations reach the long‐time steady state. All quantities are
given in dimensionless form indicated by tildes; we rescale {x, s, o, ban, baer} by the characteristic quantities {xfeed,
xfeedNΞ, xfeedNΞ(κo,aer,max/κs,aer), xfeed(γaer/κx,an), xfeedNΞ(γaer/κs,aer)} as detailed in the text.



The aerobes-only state. In the AO state, at each imposed value of the simple sugar

abundance β, the aerobe concentration reaches a well-defined steady-state value baer,s (I and

VII in Figs. 5.1c, 5.6); the simple sugar and oxygen concentrations reach corresponding

steady-state values s̃s and õs, respectively. Therefore, we begin by seeking steady-state solu-

tions to Eqs. 5.6–5.10 by setting d/d̃t= 0. This procedure yields

From Eq. 5.6 : b̃an,s(x̃s, õs) =
γ(1− x̃s)

g̃x,an(x̃s)[1− g̃o,an(õs)]
, (5.11)

From Eq. 5.7 : β(̃ss, x̃s, õs) = Ξγ−1b̃aer,s(̃ss, õs)g̃s,aer(̃ss)g̃o,aer(õs)

+ αγ−1b̃an,s(x̃s, õs)g̃s,an(̃ss)[1− g̃o,an(õs)]

− Ξγ−1b̃an,s(x̃s, õs)g̃x,an(x̃s)[1− g̃o,an(õs)]

+ Ξ̃ss,

(5.12)

From Eq. 5.8 : b̃aer,s(̃ss, õs) =
κ(δΞ−1 − õs)

κ̃o,aer(̃ss)g̃o,aer(õs)
, (5.13)

From Eq. 5.10 : s̃s(õs) =
s̃1/2,aer

g̃o,aer(õs)γ−1 − 1
. (5.14)

In the AO state, b̃an,s = 0; thus, Eq. 5.11 yields x̃s = 1. Substituting this equality combined

with Eq. 5.14 into Eqs. 5.12–5.13 then yields both β and b̃aer,s as functions of solely õs. In-
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verting β(õs) then yields our final result, the aerobes-only solutions for õs(β) and b̃aer,s(β)

shown by the red curves in Fig. 5.6a,c. These solutions capture our numerical data (circles

for I and VII) exactly—quantifying the intuition that in the AO state, aerobes consume the

supplied simple sugar, mediated by oxygen consumption, and utilize it for their growth.

Transition to coexistence. As the oxygen concentration in the reactor decreases with

increasing aerobe concentration, it eventually becomes low enough to sustain anaerobic

growth as well (II in Figs. 5.1c–d, 5.6). Consequently, the microbial community tran-

sitions to the C state. Intuitively, this transition is analogous to the process by which a

small inoculum of a new species (anaerobes) “invades” an existing colony of an indigenous

species (aerobes)123—the onset of which is determined by the transition between db̃an/d̃t

< 0 (anaerobic washout) and db̃an/d̃t> 0 (anaerobic invasion). Therefore, we begin by

setting db̃an/d̃t= 0, which yields

From Eq. 5.9 : g̃o,an(õs) = 1− γλ−1

N(1− Ξ)g̃x,an(x̃s) + g̃s,an(̃ss)
. (5.15)

In the AO state immediately prior to the transition to coexistence, b̃an,s = 0, x̃s = 1, and s̃s

≪ s̃1/2,an (Fig. 5.1d), and therefore, g̃x,an(x̃s) = (1 + x̃1/2,an)−1 and g̃s,an(̃ss)≈ s̃s/̃s1/2,an ≪

N(1− Ξ)g̃x,an(x̃s). Substituting these simplifications into Eq. 5.15 then yields estimates for

the critical oxygen concentration and corresponding simple sugar abundance at which the

microbial community transitions to the C state: õs,crit/õ1/2,an ≈ λγ−1N(1− Ξ)(1+ x̃1/2,an)−1

−1= 10.0 and βaer,crit ≈ Ξ(b̃aer,s,crit + s̃s,crit) = 0.60, respectively, where b̃aer,s,crit and s̃s,crit are

given by substituting õs,crit into Eqs. 5.13–5.14. These estimates are in excellent agreement

with the values 0.48≤ õs,crit/õ1/2,an ≤ 10.6 and 0.58≤ βaer,crit ≤ 0.75 obtained from our

numerical simulation (Figs. 5.1d, 5.6)—quantifying the intuition that to transition to the
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C state, oxygen consumption by aerobes must be sufficient to provide conditions for anaer-

obes to begin to “invade” the reactor without being washed out. For β> βaer,crit, b̃an,s >

0, and therefore, the AO solution indicated by the red lines in Fig. 5.6 becomes unstable

(dashed).

The coexistence state. Without any simplifications, the steady-state relations obtained

previously (Eqs. 5.11–5.15) jointly yield exact analytical solutions for s̃s, x̃s, β, b̃aer,s, and b̃an,s

as functions of solely õs. Therefore, we expect that these equations fully describe the steady-

state chemical and bacterial concentrations in the C state. To verify this expectation, we

plot these quantities for varying õs, as shown by the blue curves in Fig. 5.6. The solutions

capture our numerical data (circles for III and IV) exactly—quantifying the intuition that

in the C state, anaerobes break down complex carbohydrate to simple sugar, sustaining

their own growth as well as that of the aerobes, which also consume oxygen and thereby

maintain favorable conditions for the anaerobes to continue to survive.

Transition back to the aerobes-only state. Upon ramping down the simple sugar

abundance β, coexistence persists until β= βcoex,min < βaer,crit: the extant population of

anaerobes shares simple sugar with the aerobes, enabling them to continue to grow, con-

sume oxygen, and sustain anaerobic growth as well—despite the low value of β. The critical

value βcoex,min is then simply given by the minimum value of β for which a real-valued so-

lution to the coexistence state (as obtained earlier, shown by the blue curves in Fig. 5.6)

exists. We thereby estimate βcoex,min ≈ 0.29, in excellent agreement with the value 0.25≤

βcoex,min ≤ 0.33 obtained from our numerical simulation—quantifying the intuition that

even lower levels of simple sugar abundance do not enable aerobes to consume enough oxy-

gen to sustain anaerobic growth. As a result, the C solution indicated by the blue lines in
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Fig. 5.6 becomes unstable (dashed) and the community transitions back to the AO state

(VI). Within the context of dynamical systems theory, the oscillatory dynamics that arise

prior to this transition (V) are characteristic of a limit cycle around a stable equilibrium

point in phase space; indeed, the amplitude of the oscillations in e.g., oxygen concentration

displays a hysteresis loop characteristic of a subcritical Hopf bifurcation, as shown in the

inset to Fig. 5.6c. Further investigating the features of this instability will be an interesting

direction for future work.

Taken together, these results demonstrate that not only does our full model recapitu-

late the two states (AO and C) observed in experiments, as well as the hysteretic transitions

between them, but the steady-state solutions given by Eqs. 5.11–5.15 also provide a way

to analytically describe these behaviors. Thus, to develop a broader understanding of the

underlying biophysics, we next examine how these complex phenomena depend on both

oxygen depletion and sharing of simple sugar more generally.

5.3.3 Oxygen depletion and nutrient sharing jointly enable coexistence

Given the necessity of oxygen depletion for coexistence, we hypothesize that increasing

δ—which corresponds to reduced depletion of oxygen by the aerobes—will shift the AO-

C transition to larger values of simple sugar abundance β. To test this hypothesis, we re-

peat the simulations shown in Fig. 5.6, ramping β up and then down between 0 and 1.2,

keeping the same intermediate value of the sharing parameter Ξ= 0.5 but with varying

δ. The results are shown in the state diagram shown in the middle panel of Fig. 5.7, with

the results of Figs. 5.1 and 5.6 given by the points along δ= 3.9× 10−3. Consistent with

the findings reported in Figs. 5.1 and 5.6, the microbial community initially exists in the
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Figure 5.7: State diagrams for microbial communities under varying simple sugar and oxygen abundance. Symbols
indicate the steady state reached by the microbial community in numerical simulations such as those in Fig. 5.6, holding
a given value of the oxygen abundance parameter δ during ramp up (increasing simple sugar abundance β from 0 to
1.2) and ramp down (decreasing β from 1.2 to 0); red circles and blue triangles show the monostable aerobes‐only (AO)
and coexistence (C) states, respectively. Superimposed red circles and blue triangles show the bistable regime in which
the AO state manifests during ramp up, while the C state manifests during ramp down. The transitions from AO to C
and vice versa are described by the critical values β= βaer,crit and β= βcoex,min, respectively. The background shading
and dashed lines show the stable states and critical β values predicted by our analytical steady‐state solutions given by
Eqs. 5.11–5.15. The analytical theory and numerical simulations show excellent agreement, except as expected for the
case of large δ, for which βaer,crit exceeds the upper limit of the β explored; thus, coexistence is never reached and the
bistable regime is precluded. In all cases, coexistence requires both oxygen depletion and nutrient sharing (small δ and
large β). Moreover, the regime of bistability over which coexistence persists narrows in going from the “altruistic” limit
of strong nutrient sharing (left panel Ξ= 0.9) to the “greedy” limit of weak nutrient sharing (right panel, Ξ= 0.1) by
anaerobes.

aerobes-only (AO) state (red triangles) at low β, eventually transitioning to the coexis-

tence (C) state (blue circles) as β is ramped up above a critical value βaer,crit. Moreover, as ex-

pected for the case of large δ—for which βaer,crit exceeds the upper limit of the β explored—

coexistence is never reached and the bistable regime is precluded. Upon ramping down β,

the community persists in the C state in a bistable regime (superimposed red triangles and

blue circles) until it eventually transitions back to the AO state below another critical value

βcoex,min. In agreement with our hypothesis, these states and the transitions between them

are sensitive to oxygen depletion: as oxygen depletion by the aerobes is reduced (increasing
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δ), the AO state persists over a broader range of β, with both transitions between the AO

and C states shifted to larger values of β. Our analytical steady-state solutions given by Eqs.

5.11–5.15 capture these shifts exactly; the shading in Fig. 5.7 corresponds to the top bar in

Fig. 5.6, indicating the AO and C states as well as the bistable regime between them, and

the dashed lines show the analytical solutions for βaer,crit (red) and βcoex,min (blue). This close

agreement quantifies the intuition that coexistence requires both oxygen depletion and

nutrient sharing.

As a final demonstration of this point, we repeat these simulations, but for different val-

ues of the sharing parameter Ξ, as well. In particular, we explore two different limits: that

of large Ξ= 0.9, in which the anaerobes are “altruistic” and share a larger fraction of the

simple sugar liberated from complex carbohydrate with the entire community, and con-

versely that of small Ξ= 0.1, in which the anaerobes are instead “greedy” and only share

a smaller fraction of the liberated simple sugar. The results are summarized by the left-

and right-most panels of Fig. 5.7, respectively; the theoretical predictions for the result-

ing states and transitions between them, as determined using Eqs. 5.11–5.15, are shown

by the shaded regions and dashed lines demarcating them, respectively. We find excellent

agreement between the full numerical simulations and the analytical theory, confirming

the validity of our biophysical analysis more broadly. In both cases of altruistic or greedy

anaerobes, we again find that the overall community initially exists in the AO state at low

simple sugar abundance β, eventually transitions to the C state with increasing β, and then

continues to coexist with decreasing β until it transitions back to the AO state at even lower

β. Moreover, we again find that the AO (C) state spans a wider range of β at larger (smaller)

δ, highlighting the importance of oxygen depletion in enabling coexistence.

144



Confirming our expectation, nutrient sharing also plays a pivotal role in enabling coex-

istence. For example, in the altruistic case of Ξ= 0.9, coexistence persists over a broader

window of {β, δ} after having been established i.e., during ramp down, as shown by the

left-most panel of Fig. 5.7. Conversely, in the greedy case of Ξ= 0.1, the regime of bista-

bility over which coexistence can persist nearly vanishes, as shown by the right-most panel.

Close examination of the corresponding shifts in the boundaries between the AO and C

states βaer,crit (red) and βcoex,min (blue) reveals the underlying cause. Increased sharing of

simple sugar (larger Ξ) increases βaer,crit (red line shifts to the right): it is more difficult to

initially sustain the population of anaerobes if they utilize less of the complex carbohydrate

for their own growth. However, despite this cost associated with altruism, it can also be

beneficial. Increased sharing also decreases βcoex,min (blue line shifts to the left): having been

stably established in the community, anaerobes can continue to supply simple sugar to sus-

tain aerobic growth, which in turn maintains the low-oxygen environment needed for the

anaerobes themselves to continue to survive. Thus, as the old adage goes, sharing is caring.

5.4 Conclusion

Centuries of research have established that competition for limited resources—the “fre-

quently recurring struggle for existence”, as Charles Darwin put it280—can profoundly

impact the growth and functioning of a multi-species community. It is now becoming in-

creasingly clear that mutualistic interactions between distinct cell types also abound and

play key roles in microbial communities; however, the dizzyingly-complex array of different

interactions that arise in nature makes it challenging to isolate the influence of mutual-

ism on community behavior. To address this challenge, in this chapter, we examined the
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growth of a simplified aerobe-anaerobe community with mutualistic metabolic interac-

tions between the two species: the anaerobes sustain aerobic growth by breaking down

non-metabolized complex carbohydrate to shared simple sugar, while the aerobes sustain

anaerobic growth in turn by consuming oxygen.

Figure 5.8: Summary of the different behaviors that arise in this microbial community. At low simple sugar abundance,
the community is in the stable aerobes‐only state (top and middle left) in which solely aerobes consume simple sugar,
but are not concentrated enough to deplete oxygen for anaerobic growth. At high simple sugar abundance, the com‐
munity transitions to the stable coexistence state (top and middle right) in which aerobes sufficiently deplete oxygen to
sustain anaerobic growth, which in turn enables simple sugars to be liberated from complex carbohydrate and shared
with the overall community. Upon subsequently decreasing the simple sugar abundance, before it transitions back
to the aerobes‐only stable state, the community oscillates between the low‐oxygen (bottom right) and high‐oxygen
(bottom left) metastable states. In the former state, complex carbohydrate is rapidly broken down by anaerobes, causing
aerobes to eventually run out of simple sugar and diminishing their ability to deplete oxygen—driving a transition to the
latter state. In the latter, anaerobic breakdown of complex carbohydrate is slower, which enables complex carbohydrate
and the subsequently liberated simple sugar to eventually become replenished, causing aerobes to increasingly deplete
oxygen—driving a transition back to the former state.

Remarkably, despite its simplicity, we found that our model of this community recapitu-
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lates many of the behaviors exhibited by laboratory and natural communities. In particular,

it can adoptmultiple stable states—transitioning between the states of aerobe-only (AO)

growth and aerobe-anaerobe coexistence (C) in response to changes in carbon and oxygen

fluxes, as summarized in Fig. 5.8. It also exhibitsmultistability—either of the AO and C

states can arise under identical conditions, depending on the history of carbon and oxy-

gen fluxes—leading to hysteresis and even oscillatory growth dynamics. Taken together,

these results provide a simple demonstration of howmutualism can generate the complex

growth behaviors that commonly arise in many different microbial communities. As such,

our work complements the vast and insightful literature in microbial ecology focusing on

the role of competition in influencing community behavior. Examining the influence of

additional non-mutualistic interactions in our model would therefore be an interesting

extension of work.

Indeed, a strength of our model is that it can reproduce the community behavior pre-

dicted by a more sophisticated metabolic model of a similar aerobe-anaerobe commu-

nity71 (as detailed further in Fig. 5.5). This more sophisticated model considers the full

genome-scale network—comprising thousands of different metabolites and reactions—of

metabolic interactions, which span the range from competitive to mutualistic. By con-

trast, ours only considers the interactions shown in Fig. 5.1a(ii), which are primarily mu-

tualistic for the parameter values we used. This agreement between the model predictions

could simply be fortuitous; but if not, it would corroborate the idea that consumption and

secretion of only a small number of metabolites often dominates community behavior,

as suggested by some experiments72–74,76,82,84,276. Further study is needed to test this idea

and disentangle the relative contributions of different metabolites/metabolic pathways on
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community-level functioning.

Another strength of our model is that, owing to its simplicity, it provides analytical pre-

dictions (Eqs. 5.11–5.15) and biophysical intuition for the different behaviors exhibited

by this microbial community. Our approach could thus be used to inform the design of

future experiments seeking to better characterize these behaviors, without requiring the

large quantities of data—which may not be readily accessible—that are needed as inputs

to sophisticated metabolic models. For example, the analytical predictions accurately de-

scribe the chemical and bacterial concentrations in both the AO and C states, as well as

the transitions between the states (Figs. 5.6 and 5.7), governed by the interplay of both

oxygen depletion and nutrient sharing. In particular, our analysis shows that for aerobe-

anaerobe coexistence to arise, aerobes must be able to consume sufficient oxygen to provide

conditions for anaerobes to begin to “invade” the reactor. It also reveals the origins of hys-

teresis when transitioning away from coexistence: anaerobe sharing of simple sugar with

the aerobes enables them to continue to grow and consume oxygen, even in conditions of

reduced simple sugar supply, thereby sustaining coexistence. Finally, our analysis demon-

strates that oscillations in bacterial growth—which are usually thought to be caused by

competition77,82,88,88,96–102—arise in this community instead due to periodic fluctuations

in oxygen depletion by the aerobes that are coupled to fluctuations in carbon availability,

mediated by anaerobic growth and metabolism. Consistent with this interpretation, re-

moving the dependence of oxygen consumption by the aerobes on carbon availability—as

may sometimes be the case71—abolishes the oscillations (Fig. 5.5). Guided by our findings,

it would be interesting to further explore the nature of these oscillations in experiments, in

addition to further characterizing them within the framework of dynamical systems theory.
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The community considered here provides a simplified representation of the aerobe-

anaerobe communities that play critical roles in human health, our environment, waste

treatment, and other biotechnological processes71,73,74,76,80,108–124,134–143,145–157; thus, our

work sets a foundation for future research with potential implications extending beyond

microbiology and biological physics. To this end, our model takes a step toward captur-

ing the essential biophysical processes underlying the complex dynamics of such microbial

communities—but in doing so, necessarily required some simplifying assumptions and

approximations. For example, we considered growth of two species in the well-mixed en-

vironment of a bioreactor, in which the distribution of all chemicals is spatially uniform,

and the imposed oxygen and carbon fluxes are held constant until the community reaches a

steady state. However, natural environments often have spatial and temporal fluctuations

in nutrient availability281,282, involving a larger repertoire of metabolites and mediators of

metabolism, and with more than two microbial species that may adapt to changing condi-

tions through evolutionary adaptation or phenotypic plasticity. These added complexities

can give rise to fascinating new behaviors, leading to e.g., the emergence of spatial struc-

ture and facilitated coexistence in communities72,73,88,139,158,283,284. It could also be that

microbes tune the extent of sharing (quantified by Ξ), which presumably could be under

evolutionary selection, to e.g., optimize their individual growth or promote coexistence. In-

vestigating these effects using the foundation provided by our model will be an important

direction for future research.
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6
Outlook and future directions

6.1 Chemotactic migration under confinement

A theory describing hopping, trapping, and crowding. The Keller-Segel equations can

be derived elegantly from first principles37. One direction for future work is to account

for hopping, trapping, and cell-cell collisions in this type of derivation so as to produce a

model that incorporates features of confined motion. In particular, it would be interesting
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to compare the functional form of μcrowd with the resulting form of the motility parame-

ters of such a model. Care must be taken to address spreading due to jammed growth, if

including this feature is desired.

The effect of confinement on other motility mechanisms. Other mechanisms of

motility other than flagellated motility may be more or less suited to traversing confined

and/or disordered spaces? Understanding which modes of motility are better adapted to

confinement than others is an important step toward understanding the evolutionary bene-

fits of different motility mechanisms.

Rapid behavioral assays based on traveling fronts. The speed and spatial profile of

a traveling front is readily obtainable from a single experiment and contains information

about both motility and nutrient consumption. (In fact, some of the connections between

parameters and observation were surprising to me: for example, the Monod constant for

consumption strongly influences the width of the peak). It is feasible that a single experi-

ment could be used to rapidly extract a large number of the relevant parameters of practical

significance (consumption rate, Monod constant, the upper and lower bounds of logarith-

mic sensing, and the motility parameters for diffusion and chemotaxis). Such a protocol

for parameter extraction may benefit from the use of machine learning given the large pa-

rameter space. Furthermore, high resolution photography may be sufficient to capture the

essential features of the profile and its speed.

Pore size gradients. Pore size gradients emerge in some natural environments. How

these gradients redirect traveling populations of cells is an interesting extension of the work

shown in Chapter 2. Smooth gradients may alter the shape of the front, while crossing pore

size regions with sharp boundaries may impact the direction of the traveling front as pore
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size “fault lines” are crossed.

Impeded nutrient diffusion. In our experimental system, the porous hydrogels that

hinder cell motion do not hinder nutrient diffusion. In some applications, the “solid”

phase of the relevant mediummay be, to some degree, impermeable to nutrient as well as

cells. We postulate that nutrient impermeable grains would both change the overall dif-

fusivity of the nutrient within the medium and also modify the local nutrient gradient

conditions non-trivially: at the pore scale, local nutrient gradients would necessarily be

directed along the free path towards the most nutrient abundance. Could this local gradi-

ent direction help guide cells through the pore space? Conversely, in the context of negative

chemotaxis, it is not obvious whether the same directedness in the local nutrient gradient

may enhance or hinder chemotaxis. Finally, it would be interesting to examine how to in-

corporate these effects into the Keller-Segel model.

6.2 Mixed microbial populations

Spatial variation. How aerobes and anaerobes collaborate in environments that are not

well mixed is a fascinating and important direction for future work. It is unclear what spa-

tial structures might form in the presence of an oxygen gradient and/or gradients of nutri-

ent: Will the densities of aerobes and anearobes vary along the direction of an oxygen gra-

dient alone, or will 2D or 3D patterns emerge? What is the role of directed or undirected

motility in establishing spatial structure?

Using the work in Chapter 5 as a reference point leads to these additional interesting

questions: compared with well mixed conditions, are spatially heterogeneous populations

more robust to starvation? Are they more or less amenable to the initial start-up of an
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anaerobe colony? Will oscillations as seen in Chapter 5 be sustained or prevented by spa-

tial variation?

As with our approach in Chapters 2-4, combining numerical modeling with experi-

ments of spatially heterogeneous aerobe and anaerobe communities will lead to a deeper

understanding of the interactions between populations of cells. Furthermore, examining

how structured environments mediate the spatially heterogeneous features of these systems

would lead to important discoveries to better describe the growth and spreading of diverse

microbial communities in complex environments.
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A
A.1 List of symbols
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Table A.1: Table of frequently used symbols.

Symbol Quantity Typical units

ξ Mean pore size of surrounding medium µm
φ Void volume fraction of surrounding medium none
lc Chord length within the void space of the surrounding medium µm
lh Hop length µm
d Cell size µm
τh Hop time s
τt Trap time s
Dc Nutrient diffusion coefficient µm2/s
Db Bacteria active diffusion coefficient µm2/s
Db0 Diffusion coefficient without the effects of cellular crowding µm2/s
χ Bacteria chemotactic coefficient µm2/s
χ0 Chemotactic coefficient without the effects of cellular crowding µm2/s
κ Nutrient consumption rate mM (cells/mL)−1 s−1

γ Cell growth rate s−1

cchar Monod constant for half maximal consumption and growth µM
c− Lower nutrient limit of logarithmic sensing µM
c+ Upper nutrient limit of logarithmic sensing µM
vc Local chemotactic velocity µm/min
vfr Traveling front velocity µm/min
Rf , Xf Leading edge position of front defined by a low density threshold µm
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