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ABSTRACT

Polymer additives have potential as a key engineering tool for modifying environmental,
industrial, energy, and microfluidic flows. In many cases, polymer elasticity can drive unsta-
ble, chaotic flow fluctuations in many ways reminiscent of turbulence, despite the absence
of inertia that is typically requisite. While this unstable flow is well-studied in unconfined
settings, it remains poorly understood how—or even if—this instability arises in complex,
tortuous porous media, which are characteristic of environmental, industrial, energy, and
microfluidic applications. In this dissertation, we address this gap in knowledge by fabri-
cating transparent porous media of controlled geometries and directly imaging the flow in
situ. First, using 1D pore arrays, we demonstrate that polymers accumulate memory along
the successive expansions and contractions of a porous medium, and produce a surprising
bistability in the stationary pore-scale flow state. Next, using 3D bead packings, we demon-
strate for the first time that elastic turbulence can arise in disordered 3D porous media at
flow conditions relevant to industrial applications. Leveraging this new knowledge of the
underlying flow, we develop a theoretical model for the macroscopic flow resistance at vary-
ing flow rate, providing the first quantitative link between microscopic fluctuations and
macroscopic transport of polymer solutions in porous media, resolving an over-so-year-old
puzzle. We then extend this model to stratified porous media characteristic of many envi-
ronmental applications. We demonstrate that elastic turbulence arises at distinct macro-
scopic flow rates in individual strata, allowing design of flow conditions that leverage the
concomitant increase in flow resistance to redirect flow to low permeability strata and ho-
mogenize the flow across strata. Our ongoing work indicates these findings can be general-
ized to other polymer solutions, and leveraged for new applications, like enhanced mixing
under confinement. These results suggest that many modeling approaches from inertial
turbulence can be adapted for elastic turbulence—thus providing new avenues to under-
stand, control, and engineer chaotic flows in confined spaces.
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.. 50 much of good science—and perbaps all of great

science— has its roots in fantasy.

Edward O. Wilson, Letters to a Young Scientist
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Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,

1 will be brief.

William Shakespeare, Hamlet
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Turbulence is the most important unsolved problem of

classical physics.

Richard Feynman, 1964 lectures on physics

Introduction

IN 1964, RicHARD FEYNMAN called turbulence “the most important unsolved problem
of classical physics.” This chaotic motion of fluids has garnered intrigue for centuries be-
cause it is at once fundamentally unpredictable yet staggeringly universal: the same fractal

patterns emerge in the wakes behind flying bugs and behind planes, and the mixing creamer



in our coffee is not so different from a freshwater river dumping into the ocean. This chaos
generally carries with it an elevated transport of momentum, solutes, and heat that play
crucial roles in a wide range of environmental, industrial, and medical flows. Turbulence is
used broadly in the chemical engineering industry to provide enhanced reactive solute mix-
ing in stirred tank reactors and combustion chambers, and enhanced heat transfer in heat
exchangers and cooling fins. Turbulence also carries with it an elevated resistance to flow,
indicative of a higher rate of viscous dissipation of macroscopic mechanical work into heat,
which is important to minimize for the aecrodynamics around vehicles and aircraft and to
maximize for the propulsion of helicopters, rockets, and watercraft.

Yet turbulence has its limits, and the Achilles’s heel is confinement. We now understand
well that the inertia of moving fluid particles provides a type of transient “memory” that
drives this chaotic flow state, while under strong geometric confinement the viscous dis-
sipation of momentum into heat “erases” this memory. This viscous suppression is in-
evitable in a broad range of environmental and industrial processes—from flow through
the tight pore space of groundwater aquifers, to chemical processing in packed beds and
chromatography columns, and reactions in the tiny channels of microfluidics and medical
diagnostic chips. In these settings, momentum transfer is static in time, solute mixing is
diffusion-limited, and heat transfer is conduction-limited.

The solution, then, is to find another type of chaos. We now come to recognize turbu-
lence as part of a broader class of chaotic transport phenomena. Weather patterns in the
atmospheric boundary layer exhibit a peculiar variation of turbulence confined to 2D,
and a variety of living systems from the microtubules in our cells to collections of bacteria

can produce a reminiscent chaotic flow.*” One such connection was drawn just a year after



Figure 1.1: Imposed left-to-right flow of a polymer solution in a pore within a disordered 3D porous medium. Panels
show increasing flow rate from left to right. Bright streaks show the motion of tracer particles; dark circles at the pe-
riphery show the solid grains comprising the solid matrix. At high flow rates, the flow becomes chaotic, with streamlines
that continually fluctuate and cross.
Feynman made his quip: by dissolving a dilute amount of flexible polymers into a viscous
solvent, rheologists Georgii Vinogradov and V. Manin observed an unusual elastic analog
to turbulence with striking visual similarity in its chaotic motion (Figure 1.1 gives an exam-
ple from this dissertation). ' Yet despite our capability to engineer with turbulence, few of
the same mathematical tools have been translated to these other similarly chaotic flows.

In this dissertation, I attempt to translate some of this understanding from inertial tur-
bulence to the unstable dynamic flow state that arises in polymer solutions. In particular,
I have found that Vinogradov’s elastic instability gives a similar type of fluid “memory” in
porous media (chapter 2), and in disordered 3D porous media produces a flow state very
reminiscent of Feynman’s turbulence with an analogous increase in viscous dissipation, re-
solving an over-so-year-old puzzle ** (chapter 3). Control of this excess resistance can then
be leveraged to manipulate flow in geological settings (chapter 4), and engineer enhanced
mixing in confined spaces (chapter 5). Polymer solutions thus provide a new avenue to steal
ideas from turbulence and adapt them for new settings . Let us then understand these poly-

*

mer solutions, and how exactly they produce this lucrative “elastic turbulence.”



1.1  POLYMER SOLUTIONS

WHAT IS THE DIFFERENCE BETWEEN A LIQUID AND A SOLID? Perhaps trivially a lig-
uid can flow while a solid remains rigid, but quick examples can easily confound this idea.
Peanut butter in the jar is rigid until scooped, while the solid rock mantle of the earth con-

vects continuously.

Still, peanut butter feels very different from a rock, and your intuition can rightly sepa-
rate them along a spectrum of more liquid-like to more solid-like. Water is of course very
liquid-like, and when perturbed it remains rigid only very briefly; namely, the time it takes
for molecules to thermally rearrange which is about 1 picosecond (107'* s), much too fast
for any camera to record. The earth’s mantle conversely is very solid-like, and rotates once
every 10 million years, much too slow for any camera to record. Only for intermediate ex-
amples (peanut butter, jelly, silly putty, asphalt, glass) does our attention span as humans
overlap with the speed of motion for us to notice a solid flowing over the course of a few
minutes or years.

This spectrum that we have laid out goes from liquid to solid, based on a single material

property that I have vaguely described as “time to flow”. The nuances of this time scale (in

This chapter is based in part on a published review by ,and
. Pore-Scale Flow Characterization of Polymer Solutions in MlCI’OﬂuIdlC Porous Media. Small,
16(9):1903944, 2019.
*Though sometimes the term “elastic turbulence” is reserved for unstable viscoelastic flows with specific
scaling laws, "> I will use it in this dissertation to simply refer to any chaotic polymer solution flow in the
absence of inertia Re < 1, as is frequently done.
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reality a whole library of characteristics) occupy the entire field of rheology, but in a crude
sense each material has a spectrum of “relaxation times”—of which generally the longest
relaxation time A dominates—describing how quickly the material relaxes to a fluid state
after an initially rigid response to perturbation. Comparing this longest relaxation time to
our attention span 7, we can define a dimensionless parameter the Deborah number that

characterizes how “liquid-like” or “solid-like” a material behaves:

A
De = —.
T

(r.1)
For water 4 ~ 1 ps but the fastest we can perceive changes is about 7 ~ 0.01's,s0 De ~
107", very small indeed indicating water appears liquid-like to us. Conversely, plate tec-
tonics flow 2 ~ 1 MA and our perception to geological change is at most our lifespan
7 ~ 100 yr, so De ~ 10%, very large indicating that rock formations appear solid-like to us.
Our interest rests in the middle of this spectrum on fluids that have competing timescales
because of a blend of components with difterent relaxation times A. Consider a ball of silly
putty, which acts like an elastic solid during the impact of a bounce, but spreads into a pud-
dle like a viscous liquid when left overnight. The novelty of silly putty is seen by stretch-
ing it on intermediate timescales (which by design overlap with the attention span of a
child z ~ 10s): the putty resists stretching like a rubbery elastic solid that somewhat
retains a plastic solid-like shape, but also droops under gravity and thins like a viscous
fluid. The origin of this behavior is that silly putty contains polymers: large, strand-like
molecules that can bend, coil, and stretch—storing and releasing elastic energy much like
microscopic rubber bands. The polymer chains coil and stretch slowly Ayglymer ~ 0.1

s to 1 min, but the fluid they are dissolved in generally responds very quickly Agoivene ~



1 ps, producing the competing timescales: the solvent is responding like a viscous liquid
(Desolvent = Asolvent/ 7 << 1) while the polymer is responding like an elastic solid (Depolymer =
Apolymer /7 2 1), and the fluid as a whole thus exhibits viscous and elastic properties together
(hence “viscoelastic”), giving rise to a host of intriguing flow behaviors. '

You are likely familiar with many other viscoelastic polymer solutions in everyday life.
The mucus linings of your digestive and respiratory tracts are “gooey” because of biolog-
ically produced polymers. Xanthan gum (among others) is frequently used to make gum
chewey and give food pastes their rigidity. Nearly every shampoo, conditioner, lotion, and
cosmetic has polymers (often polyethylene glycol/PEG, or wormlike micelles which be-
have in many ways like polymers) to make them hold their shape in your palm, but lather
smoothly when rubbed into hair or skin. We will now quantify how these polymer ad-

ditives modify the viscous resistance of a fluid to flow (§1.2), and modify the elastic flow

structure (§1.3).

1.2 VISCOSITY AND RESISTANCE TO FLOW

Most fluids you interact with frequently are likely “Newtonian”; that is, fluids that follow
Isaac Newton’s simple theory of viscosity. The dynamic shear viscosity of a fluid x describes
its resistance to shearing flow: water has a low viscosity of x = 0.89 x 107% Pa - s, while

honey has a much larger z ~ 10° Pa - s. For Newtonian fluids, this viscosity is a constant

In general the solvent is always liquid-like Degovene << 1, and we are only concerned with the timescale of

the polymer 4.



material property.” We can use the viscosity to compute the shear stress o (Pa), which tells

us a force per unit area that must be applied to drive a flow:

= uy (1.2)

The shear rate 7 (s™!) describes how quickly the fluid is being moved . For Newtonian
fluids, this shear stress is the only stress providing flow resistance. We can similarly compute
an energy dissipation rate @ (or “dissipation function” "), which describes the power that

must be applied (per unit volume) to maintain the flow:

= uy (1.3)

This can then be used to describe the power or energy expenditure to maintain a flow.
For example, honey has a rather high Newtonian viscosity of z = 10,000 mPa - s (com-
pared to water at 1 mPa - s): to squeeze honey out of a bottle, you will apply a pressure to
the bottle to expel fluid. The fluid speeds up as it enters the nozzle—let’s say to a veloc-
ity Uy = S cm/sthrougha D = S mm diameter and L = 3 mm deep nozzle (volume
59 mm?), creating a characteristic shear rate of ¥ ~ 3U,/D = 505~ (Fig. 1.2). The
viscous dissipation of macroscopic mechanical energy into heat is what your hand feels as
resistance; in this case with a dissipation function @ ~ 270 kPa/s and a power dissipation

of P ~ @V ~ 1500 W (similar to the consumption of a light bulb). For I mL of honey

fConstant with shear rate 7, though it is generally a strong function of temperature 7. In this dissertation,
we never consider changes in temperature, and all data are presented at roughly lab temperature 7'~ 23°.

I0



Figure 1.2: Schematic of flow exiting a nozzle. A Newtonian fluids have a parabolic velocity profile, which speeds up in
the nozzle provide a high shear rate that dominates the viscous dissipation, and hence power required to drive the flow.
B Polymer solutions have a modified dissipation in the nozzle because of shear-thinning, which can be captured by a
generalized Newtonian model. However, alignment of polymer chains and elastic recoil of polymers can modify other
parts of the flow, leading to eddy formation upstream of the constriction and in some cases elastic instabilities, with
unknown consequences for energy dissipation.
this will be a net energy consumption of &~ 0.00004 Cal (compared to the of = 3 Cal
of caloric energy contained in the honey). More accurately we should integrate this dissi-
pation function P = fv ®dV, which yields a more correct answer 1.2 higher than our
quick estimate.

This power consumption changes for a polymer solution: for example if you want to
squeeze ketchup from the same nozzle. Immediately our first equation is wrong, because
the stress is not simply linear with the shear rate ¢ # 5, nor is the dissipation function

given so clearly by the stress @ # oy. Instead, the stress required to flow depends not only

on the shear rate, but also the conformations of the microscopic polymer chains. This gives

II



them a nonlinear shear stress and and additional elastic stress, both of which can greatly
modify the flow.

First, the shear stress o which we are already familiar with is altered for polymer solu-
tions, because the polymers viscoszfy the fluid. The existence of large polymer chains, which
generally exist as coiled up balls with a characteristic radius R, (radius of gyration) create
extra friction as they pass over each other in flow, converting more macroscopic mechan-
ical energy into heat through viscous dissipation. However, as we squeeze this ketchup
from the bottle, the long polymer molecules will stretch and align as the flow speeds up to-
wards the nozzle (Fig. 1.2). This alignment allows the chains to slip past each other easier,
effectively reducing this viscosifying effect of the polymers: so our ketchup becomes rela-
tively easier to flow the harder we push on the bottle, as you can confirm yourself: this de-
crease in flow resistance is similarly why it is so common to accidentally dispense too much
ketchup on your food. " The viscosity of a polymer solution is thus not always a constant,
but rather can decrease with shear rate, and we give this polymer solution viscosity a new
symbol 7 instead of u to remind ourselves that it is not a constant (Orange line in Fig. 1.3).
For arbitrarily small shear rates this will plateau to a maximum viscosity set by the undis-
turbed polymer coils (zero-shear viscosity 7, ), and at very high shear rates this will plateau
to a minimum at the viscosity of the background Newtonian solvent (x, or sometimes 7).
In between these bounds, the viscosity generally follows a sigmoidal shape described by
the Carreau-Yasuda model, ”*° which for moderate shear rates can be simplified conve-
niently to a power-law decay y ~ j/"‘_l, where 0 < @, < landa, =~ 1 corresponds
to no shear-thinning. The power dissipation function associated with this modified shear

viscosity might then look like @5 = 7 (3) %, quite similar to the dissipation function for

I2



Figure 1.3: Schematic of viscous flow resistance for representative polymer solutions. Newtonian solvents have a vis-
cosity that is constant with shear rate (dashed lines), but polymer solutions the viscosity changes. At low shear rates, the
polymer elevates the viscosity (plateaus on left side): this is more pronounced for high A4, polymers (orange) and less
pronounced for low M, polymers (blue). At higher shear rates this viscosity drops off, following a power law for a bit
before plateauing again at the viscosity of the background solvent. A special case “Boger” fluid is made by dissolving a
high M, polymer in a high viscosity solvent, so the the polymer is highly elastic, but the magnitude of shear thinning is
not very noticeable: these solutions are useful for isolating elastic effects for modeling in the lab.

the Newtonian fluid in Eq. 1.3, but now 7 (¥) is a function that depends on the polymer
molecular weight A, and concentration ¢ as well as the solvent viscosity 7,. Because of this
similarity in the dissipation function ®@g and the shear stress ¢ to the Newtonian counter-
parts, this framework for describing polymer solutions is called a “generalized Newtonian”
approach.

This viscosifying effect has proved valuable for for engineers to design a host of fluids.
You may use flour or cornstarch (fairly rigid high molecular weight biopolymers) to thicken
gravy—and if you stir gravy fast enough you may notice shear thinning. Similarly, your
body generates mucins (flexible high molecular weight biopolymers) to thicken the water
lining your digestive and respiratory tracts into a viscous mucus—you can similarly notice

that mucus feels thick in your throat and nostrils, but thins nearly to water during the high

shearing action of a sneeze. A range of other household cosmetics, detergents, and prepack-

13



aged foods similarly use polymers essentially as a cheap way to add viscosity.

Industrial processes also take advantage of this viscosifying effect, and in the 60’s poly-
mer additives found use in the oil and gas recovery industries. During oil and gas recovery,
aflooding fluid (water plus dilute additives) is injected into a subsurface reservoir to push
out the trapped resource. These reservoirs are typically dense porous packings of water-wet
soil, rock, and mineral grains, and look much like a sponge or a packing of sand. Dilute
solutions of low molecular weight polymers were at first used simply to suppress finger-
ing instabilities during injection and thereby maintain flow uniformity during fluid re-
covery.”** However, EOR field tests with high molecular weight polymers often yield
unexpectedly high recoveries of oil fluid far beyond what is expected from a simple viscosi-
tying effect.”’~*" These findings have prompted the use of high molecular weight polymer
solutions for groundwater remediation as well, where a flooding fluid is similarly used to
displace contaminants from a subsurface aquifer. *~

What induces this vast improvement in recovery? In 1967, rheologists Marshall and
Metzner made a surprising report: despite the polymer solutions being shear-thinning (
decreases with shear rate ¥), inside of a porous medium the resistance to flow suddenly -
creases—sometimes by over 30 x.'* For clarity this apparent resistance observed in a porous
medium—but not in bulk solution—is given a new symbol for an “apparent” viscosity 7, ,
which is thus a function of not only the polymer solution properties (M,, ¢, »,) but also the
confining geometry of the porous medium.

The immediate hypothesis for this unusual behavior is the accumulation of elastic mem-
ory, which can modify the base flow or dissipate energy through an extensional viscosity

(described below). **~*" However, challenges in rheology and an inability to image the flow
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in these opaque porous media have prevented quantification of these competing hypothe-
ses. Thus, broad application is still limited by an incomplete understanding of how these
macroscopic variables depend on the pore-scale features of the fluid flow, which in turn
depend on polymer properties, pore space geometry, and imposed flow conditions. As a
result, the mechanisms underlying polymer solution-enhanced fluid recovery are still widely
debated, »**~***"~** and general principles for predicting and controlling the flow are lack-
ing. In this dissertation, by directly imaging the flow in situ, we can begin to test these hy-

potheses directly for the first time.

1.3 ELASTIC FLOW EFFECTS

In addition to this modified viscosity, polymers are e/astic. Entropy drives polymers to a
compact coiled state, often visualized as a ball with radius R, (radius of gyration). When
subjected to a steady extension rate € (or shear rate y), the polymer can stretch to an equi-
librium length L., (Fig. 1.5), as we imagined the polymers in our ketchup doing in the
extensional flow of the nozzle constriction. This stretched state usually plateaus a bit be-
low the contour length ~ 0.85L,*** where all molecular bonds would be in their most
extended trans conformations. For high molecular weight polymers, this transition be-
comes sharper and nonlinear, can even double over to produce a hysteretic “switch” be-
tween the coiled and stretched conformations (coil-stretch transition) in extensional lows
€.77 In shear flows, high molecular weight polymers instead exhibit a periodic tumbling

motion, with regular intervals of stretching, rotating, and recoiling. **** When combined

IS5



with streamline curvature, this elastic stress produces a hoop stress, which drives the poly-
mer to compress and travel toward the center of flow curvature, analogous to centripetal
motion. This hoop stress is the reason that cake batter will climb up the rods of electric
mixers (“rod climbing”). In geometries with contractions, polymers align to minimize these
hoop stresses in the corners, leading to the formation of large upstream recirculating eddies
(Figure 1.2).

In a shear rheometer, this hoop stress can be measured as a normal stress on the rheome-
ter plate or cone, and hence we can estimate the elastic stresses at a given shear rate y using
the first normal stress difference N (7), which is also a nonlinear function of shear rate and
generally most pronounced for high molecular-weight polymers in viscous solvents (an ex-
ample used in this dissertation is shown in figure 1.4) " ”*°. More sophisticated methods are
being developed to discern the dependence of these stresses on extension rate € as well,
but for simplicity we shall use characteristic shear rates y to estimate these stresses. The rel-
ative roles of these viscous liquid-like stresses and elastic solid-like stresses are quantified by

the dimensionless Weissenberg number:

NG
M=)

(1.4)

The factor of 1/2 arises from the Oldroyd-B constitutive model; some researchers omit this
factor for simplicity, to obtain an order-of-magnitude estimate. An alternative Weissenberg
number Ay is also frequently used. In this dissertation, we will recast changes in flow rate Q
or shear rate y using the above definition.

This high-energy stretched state requires hydrodynamic stress supplied by the exten-

sional or shear low to maintain the chain under tension: once the extensional or shear flow
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Figure 1.4: Viscous and elastic stresses of example polymer solution in this dissertation under constant shear flow 7
Formulation B used in this dissertation, described further in §A.1

Figure 1.5: Chain extension dynamics A: Equilibrium polymer chain length increases with applied shear rate or extension
rate. For high molecular weight polymers, this can eventually give a sharp hysteretic coil-stretch transition during exten-
sion € (purple line) or periodic tumbling during shear ;/ (not pictured).”"” B Polymer chains approach this equilibrium
conformation exponentially in time, both in relaxation 1., and extension A, though these times are often similar and

given simply by 1.
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stops, the chains will release the elastic energy and relax back to R, and release this elastic
energy. However, these elastic stresses do not build up or release instantaneously. Instead,
polymer molecules stretch slowly over a retardation time A, and recoil with a relaxation
time A, (though often these times are assumed to be similar A ~ A,.c = A,q) (Fig. 1.5). De-
tailed work has linked this molecular time scale to the relevant macroscopic time scales one
would choose to define De as above (§1.1).*>"~7° These time scales are often on the order
of seconds, and the polymers can be transported by the background flow (advected) faster
than they can respond. In particular, when De = 1y 2 1as we defined at the beginning,
we have these competing timescales that give viscoelasticity. From a molecular perspective,
the polymers are “out of sync” with the local flow, producing a molecular fading-memory
that can give the fluid spatial or temporal dynamics. For example, our ketchup will swell a
little when it exits the nozzle (dye swell) and toothpaste will spring back into the tube when
released (elastic recoil), among other interesting effects (tubeless siphoning)

Finally, in addition to these steady (in time) elastic effects, the fading memory of poly-
mer molecules can produce unsteady or transient flow effects when strong viscoelasticity is
combined with strong streamline curvature %. These instabilities will quantitatively occur
when (i) the deformation of the fluid 7 can build up sufficient elastic stresses to overwhelm
the dissipating viscous stresses Wi = Nj/ (20) 2 1;and (ii) these elastic stresses are re-
tained through polymer memory 1 during advection U over curved streamlines % long
enough for the elastic stress to be retained as a destabilizing hoop stress De = AU/Z 2 1.
Hence, a linear stability analysis of the Stokes equation for a viscoelastic fluid indicates that
the flow becomes unstable when M = 4/2Wi - De exceeds a threshold,”>”” which has been

empirically found to be M, =~ 6 to 12 in a range of model geometries.””” This elastic insta-
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bility produces a self-sustained '* chaotic fluctuating flow state, displaying no characteristic
spatial or temporal scale.” " This elastic instability thus shares a striking visual similar-

ity with turbulent flows, despite the low Re < 1 prohibitive for turbulence, prompting
Vinogradov and Manin’s to term the flow state “elastic turbulence.” "' Though a similar
instability arises in a range of shear rheometers and serpentine channels, the structure and
magnitude of fluctuations depends sensitively on the confining geometry. ' #7"7777" It
thus remains unknown how this instability arises—if at all—in a tortuous, disordered pore
space, where polymers may retain memory between successive contractions and expansions

of each pore (Figure 1.6).

1.4 POLYMER FLOW IN POROUS MEDIA

How then can these elastic flow effects, and potentially elastic instabilities, lead to the puz-
zling anomalous increase in flow resistance observed in porous media, but not simple shear
flows? The porous media relevant to EOR and groundwater remediation are typically
dense packings of water-wet soil, rock, and mineral grains. The resulting pore spaces are
highly heterogeneous and tortuous, with successive contractions and expansions known as
pore throats and pore bodies, respectively; the pore throat diameters L, typically range from
~ 100 nm to 10 um while the pore body diameters Ly, are typically ~ 2 to 5 times larger
(Figure 1.6 and accompanying table). During injection, a polymer solution is forced to flow
through this pore space. The interstitial injection speed U = Q/ @4, where ¢ ~ 0.1to0 0.4

is the medium porosity, is limited by the ability to apply a sufficiently large fluid pressure
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Parameter Range

Pore throat diameter /; ~ 0.16d, o.1 to 10 zm
Pore body diameter /t, ~ 0.24d, 0.2 to0 50 #gm

Fluid viscosity # 1073 to 107! Pa-s
Interstitial flow speed U 107% to 10% um/s
Shear rate y ~ UJ/!, 107 t010° s

Pore residence time 7, ~ £,/U 2 x 1073 to5 X 10> s
Polymer relaxation time A 1072t010%s

Figure 1.6 & Table 1.1: Flow in a porous medium. Solid grains of diameter dp give pore bodies (expansions) 4; and pore
throats (constrictions) ;. Dispersion within the medium causes initially close solutes (orange and blue dots) to continu-
ally separate as they are advected along laminar streamlines. Fluid moving with characteristic velocity U creates a shear
rate ;/ with the solid grain walls, which stretches polymers in the constrictions (pore throats), but only can partially relax
in the expansions (pore bodies) due to their nonzero relaxation time 1 over the finite pore residence time 7., which can
lead to accumulated extension (Hencky strain €) over the course of many pores.

drop; thus, interstitial flow speeds typically range between ~ 0.01 and 100 pm/s.*>** We
summarize these pore-scale parameters in Table 1. Under these conditions, inertia is always
absent Re = pUL, /7 ranges from ~ 107" t0 1073 < 1, and Newtonian fluids thus exhibit
laminar, steady-state flow. By contrast, polymer solutions applied in EOR and ground-
water remediation can have M ranging from ~ 107 to 10°, indicating that unstable flow
might be able to arise in many of these cases (Table 1.2). However, direct visualization of

elastic turbulence in 3D porous media has been precluded by the opacity of typical porous

media, and until this thesis, visualizations are limited to 2D models of porous media.
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Parameter  Definition Interpretation Range

Reynolds Re = pUL, / 7 inertial stress / viscous stress 107" t0 1073
Weissenberg Wi=N; / 20~ l}/ elastic stress / viscous stress 107° t0 10°
Deborah De = /7 polymer relaxation time / residence time 2x107°t0S x 10*
Capillary Ca = »Up / y pore-scale viscous stress / capillary pressure 107 ¢t0 1073

Table 1.2: Table of key dimensionless parameters characterizing polymer solution flow in porous media. p is the fluid
density, U is the interstitial flow speed, L, is the pore throat diameter, 7 is the fluid shear viscosity, /N is the first
normal stress difference, o is the shear stress, 1 is the polymer relaxation time, ;/ is the shear rate, 7, is the polymer
residence time in a pore, @ is the medium porosity, and y is the aqueous-nonaqueous fluid interfacial tension.
Nevertheless, a broad body of work in 2D microfluidics over the past 20 years has demon-
strated that the velocity field is characterized by large eddies with a broad spectrum of spa-
tial and temporal fluctuations that depend on the polymer solution and contraction/expansion
geometry. ""~”" The simplest model of a pore is a single abrupt constriction. A flowing
polymer solution forms large eddies upstream of a constriction above a threshold value of
M. While reminiscent of the steady eddies formed by rigid and elongated polymers, these
eddies fluctuate strongly in time.”” The eddy size and asymmetry increases non-linearly
with Wi and with increasing contraction ratio L,/L;,">"">7>">""7"°" though a universal rela-
tionship has not been established. Interestingly, the presence of inertia Re 2 1 suppresses
temporal fluctuations of these eddies, and promotes symmetry in their structure. >
Flow through a pore is often represented instead by flow impinging on a channel-centered
cylinder. Single-molecule imaging of fluorescently-labeled DNA provides evidence that
polymers are stretched and have hysteretic conformations as they flow around the cylin-
der”” in a manner similar to coil-stretch hysteresis. Thus, similar to the case of flow through
a constriction, upstream eddies form during polymer solution flow around a cylinder in a

narrow channel, growing in size and becoming unstable as Wi increases; intriguingly, the
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vertical location of the eddy can exhibit discrete switching between the top and bottom
walls of the channel,”” suggesting a possible connection to bistable polymer conformations,
which we explore in chapter 2 of this dissertation.

Real-world porous media are typically composed of many interconnected pore expan-
sions and contractions. To more closely mimic this geometry, experiments have investi-
gated polymer solutions flowing through channels with multiple constrictions, channel-
centered pillars, and undulating walls arranged in 1D or in 2D arrays. Results obtained
for ordered 1D arrays of pores in channels of narrow widths consistently demonstrate the
formation of unstable eddies upstream of constrictions, similar to the case of a single con-
striction. "7 »7%"**='%7 Because polymer stretching is hysteretic and can persist over large
length scales,” polymer elongation may be retained across multiple pores. This “memory”
may therefore provide new spatial structure to the flow over macroscopic scales in a porous
medium. Studies of ordered 1D arrays are beginning to reveal such effects. For example,
decreasing the distance between pillars in a narrow channel produces stronger fluctuations
at similar values of Wi; ** conversely, in a wider channel, the wake formed downstream of
a first cylinder can merge with the wake formed downstream of a second. ** Chapter 2 of
this dissertation studies the role of this polymer memory in successive expansions and con-
tractions of a model porous medium, demonstrating how a novel bistability can arise when
polymer memory can persist during advection between pores A 2 U

This complex coupling between pores also manifests in 2D arrays, showing flow be-
havior that can differ strongly from the 1D case. For example, polymer solutions flowing
through ordered 2D arrays show strong velocity fluctuations throughout the pore space—

but eddies are never observed. ***" Intriguingly, in other studies of flow through ordered
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2D arrays of circular, square, and triangular pillars, large triangular ‘dead zones’ form on
the upstream faces of the pillars; these dead zones are characterized by strong polymer com-
pression and elongation, but unlike eddies, they show no apparent recirculation. "
These dead zones periodically grow and disappear; moreover, the frequency of this process
increases further downstream along the porous medium, indicating that coupling between
pores influences the flow. """ Consistent with these observations, the temporal variation
in pressure measurements increases downstream along ordered 2D arrays of circular pil-
lars, suggesting that instabilities grow spatially. *“**** Combining such flow visualization to
measurements of the overall pressure drop provides a way to directly link flow structure to
macroscopic flow resistance. Such measurements show a dramatic increase in macroscopic
flow resistance—mimicking the increase in Tapp observed in bulk porous media—at the on-
set of unstable flow. *>'°>"*>""# Simulations in model porous geometries can also capture
the onset of flow fluctuations'*>~*'7 and the associated increase in flow resistance. ' " "
These recent findings thus suggest the possibility that the striking increase in polymer solu-
tion flow resistance measured in bulk porous media reflects the onset of unstable flow.
Real-world porous media, however, are typically disordered: the pore sizes and spacing
between grains are not uniform. While the majority of experiments and simulations have
focused on studying polymer solution flow in ordered arrays, ongoing work is beginning
to reveal that structural disorder can dramatically impact flow behavior. For example, flow
visualization in 2D arrays of circular pillars shows that while a highly unstable flow state
arises in an ordered medium due to sustained polymer elongation, velocity fluctuations are
nearly completely suppressed in a disordered array, suggesting that elastic turbulence can-

not arise in inherently disordered 3D media. > However, other results show the opposite
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effect, suggesting that the onset of elastic turbulence in disordered media is sensitive to the
particular geometry considered. "** Hence, while microfluidic experiments in 2D arrays in
many ways help guide our understanding of polymer solution flow, the increased dimen-
sionality, tortuosity, connectivity, and disorder of real 3D porous media likely play crucial
roles that remain unmodeled. To fill this gap in knowledge, in chapter 3 of this disserta-
tion we fabricate transparent model 3D disordered porous media and directly image the
flow in situ. We find that elastic turbulence does indeed arise, but at a different onset Wi, in
each pore—likely linked to the disordered geometry of individual pores. Guided by these
findings, we quantitatively establish that the energy dissipated by unstable pore-scale fluc-
tuations generates the anomalous increase in flow resistance through the entire medium
through a dissipation function y very analogous to the dissipation function observed in
inertial turbulence @’.% Our results thus help to resolve this longstanding puzzle.

Finally, we will explore structurally heterogeneous porous media, like those found in
many environmental applications, such as remediation of contaminated groundwater
aquifers, »'** recovery of oil from subsurface reservoirs,”*'** and extraction of heat from
geothermal reservoirs. "** These media are often vertically-layered by strata of distinct permeabilities—
leading to uneven partitioning of flow across strata, which can often be undesirable. In
chapter 4, we use direct in situ visualization to demonstrate that elastic turbulence can gen-
erate chaotic spatiotemporal fluctuations and excess flow resistance in individual strata. In
particular, we find that this instability arises at lower imposed flow rates in higher-permeability

strata, diverting flow towards lower-permeability strata and helping to homogenize the

SThe unstable dissipation function®’ 7 or equivalently the turbulent kinetic energy dissipatione.'*' We
avoid use of symbol € to avoid overlap with the Hencky strain, which is typically given the same symbol, and
use of the term kinetic energy dissipation, since in our low Re flows it is dissipation of mechanical energy.
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flow. Guided by the experiments, we develop a parallel-resistor model that quantitatively
predicts the flow rate at which this homogenization is optimized for a given stratified medium,
providing a new approach to homogenize fluid and passive scalar transport in heteroge-
neous porous media.

Chapter s of this dissertation will report some ongoing work to generalize these findings
to polymer solutions at different concentrations ¢ and explore how the chaotic fluctuations
can generate elevated pore-scale mixing of solutes. The appendix A gives details materials

and methods that will be useful for replicating and building upon this work.
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Memory is an illusion, nothing more. It is a fire that

needs constant tending.

Ray Bradbury, A Pleasure to Burn

Chaos and memory

ELASTIC TURBULENCE IS DRIVEN BY POLYMER MEMORY, which allows molecules to re-
tain elastic hoop stresses as they are advected over curved streamlines long enough to desta-
bilize the laminar flow. This requisite streamline curvature can be produced by a single

obstruction or constriction—both of which provide a similar mixed extensional-shear
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Figure 2.1: Schematic of unstable flow through successive contractions and expansions of a model 2D porous medium.
In single contraction, unstable flow and fluctuating eddies appear above threshold value of A, related to retention of
polymer memory A during advection U over streamlines of curvature Z. For successive contractions, it is unknown
how polymer memory during advection over the pore separation distance /, alters the flow structure.

flow with strong streamline curvature curvature & (Fig. 2.1). In these geometries, poly-
mer chains are aligned and elongated by the flow, generating upstream recirculating ed-
dies that minimize the extensional stress associated with chain misalignment.**™>* Previous
work has also shown when elastic turbulence arises in such single-constrictions. =" In

particular, this instability arises for sufficient polymer memory over streamline curvature

De = AU/Z and sufficient elastic stresses Wi = Nj/ (20), giving the onset condition

V2Wi-De > M, = 6to12.

However, real porous media are comprised of not one but many successive constrictions
and expansions. Imaging of flow through one-dimensional (1D) arrays of widely-spaced
pore throats consistently demonstrates the formation of unstable eddies upstream of each

throat, similar to the case of an isolated throat."””*»'**~**" By contrast, when the spacing

This chapter has been adapted from published work by , ,and
. Bistability in the unstable flow of polymer solutions through pore constriction arrays. the Journal of
Fluid Mechanics, 890, 2020.” Author Contributions: C.A.B. performed all experiments; C.A.B. and A.S.
performed the image processing; C.A.B. and S.5.D. designed the experiments, analyzed the data, discussed the
results, and wrote the manuscript. S.5.D. designed and supervised the overall project.
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between pore throats is small, chain elongation may persist across multiple pores as the
polymers are advected through the pore space. Thus, memory of strain in one pore may in-
fluence the flow in a pore further downstream, potentially providing new spatio-temporal
structure to the flow. However, this possibility remains to be explored. Studies conducted
ata Reynolds number Re ~ 20 and an Elasticity number El = Wi/Re ~ 1, and thus
also subject to inertial effects, show that decreasing the spacing between pores produces
stronger flow fluctuations’*—providing a clue that polymer memory may indeed influence
the flow. Nevertheless, whether and how polymer memory impacts flow through a porous
medium has not been fully resolved for the case of Re < 1and El > 1, in which elastic ef-
fects dominate and inertial effects do not also arise. This flow regime is particularly relevant
to key applications including oil recovery and groundwater remediation, which can have
Re ranging from ~ 107" to 102 and El ranging from ~ 10 to 10".

Thus, this chapter will address the role of polymer memory over the course of suc-
cessive expansions and contractions of a porous medium for elasticity-dominated flows
(Re < land El > 1). We accomplish this by directly imaging the flow with confocal
microscopy in 1D ordered arrays of pore constrictions, enabling us to systematically tune
this pore-to-pore memory by varying the pore separation distance /,. When the spacing be-
tween pores is large, unstable eddies form upstream of each throat, similar to observations
of an isolated throat (§1.3). By contrast, when the spacing between pores is sufficiently
small, the flow exhibits a surprising bistability. In each pore body, the flow persists over
long durations in one of two distinct flow states: an eddy-dominated state in which a pair
of large unstable eddies forms in the corners of the pore body, and an eddy-free state in

which strongly-fluctuating fluid streamlines fill the entire pore body and eddies do not
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form. We hypothesize that this unusual behavior arises from the interplay between flow-
induced polymer elongation, which promotes eddy formation, and relaxation of polymers
as they are advected between pores, which enables the eddy-free state to form. Consistent
with this idea, we find that the flow state in a given pore persists for long times. In addition,
we find that the instantaneous flow state is correlated between neighboring pores; however,
these correlations do not persist over long times. Thus, our results reveal that the charac-
teristics of unstable flow are not determined just by injection conditions and the geometry
of the individual pores, but also depend on the spacing between pores. Ultimately, these
results help to elucidate the rich array of behaviors that can arise in polymer solution flow

through porous media.

2.1 MATERIALS AND METHODS

The void space of a porous medium is typically composed of successive expansions known
as pore bodies connected by narrower constrictions known as pore throats. '~ ** We use
3D stereolithography (SLA) printing to make model porous media that recapitulate these
geometric features (Appendix A.2)." Importantly, this approach provides precise control
over the pore space geometry, and yields devices that can be optically interrogated while also
withstanding the high pressures that arise during elastic polymer solution flow.

The media are made of straight, square channels, with constrictions defined by evenly-
spaced hemi-cylindrical posts shown in Figure 2.2. For simplicity, this geometry thus does

not incorporate complex pore space tortuosity and connectivity; instead, it provides a way
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Figure 2.2: Experimental setup. Fluidic channel contains pore throat constrictions defined by opposing hemi-cylindrical
posts and is fabricated using a stereolithographic 3D-printer. Dimensionsare /' = 2mm,Hd = 2mm, D, =

1.6 mm. We vary the pore throat separation distance /; and the number of throats in the channel (two examples are
shown in the left and right panels). The channel is screwed shut with an acrylic plate over a thin strip of PDMS. Inlet and
outlet tubing is glued into 3D-printed holes. The setup is inverted and videos are captured on a confocal microscope;
middle panel is vertically flipped for clarity.

to isolate and systematically probe the role of pore spacing on flow behavior. Each channel
is W =2 mm wide, H = 2 mm high, and 7 cm long, with opposing posts of diameter

D, = 1.6 mm that are laterally separated by L. = 0.4 mm and spaced by a center-to-

P
center distance of /; along the flow direction. The space between hemi-cylinders along the
flow direction thus defines the pore bodies, while the lateral constriction between opposing
hemi-cylinders defines the pore throats. Varying /; provides a way to systematically test the
influence of pore spacing on the flow. To probe the effects of polymer memory, we compare
an isolated pore throat with /; — 00, a pair of widely-separated throats with /;, = 1617/, and
an array of closely-separated thirty throats with /; = 117

To fabricate each device, we 3D-print the open-faced channel with a FormLabs Form
2 stereolithography printer, using a proprietary clear polymeric resin (FLGPCLo4) com-
posed of methacrylate oligomers and photoinitiators. We then glue inlet and outlet tubing
directly into 3D-printed connectors designed to minimize perturbation of the polymers

away from the pores. Finally, as shown in figure 2.2, the whole assembly is screwed shut

using a clear acrylic sheet laser-cut to size and placed on top of a thin strip of polydimethyl-
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siloxane (PDMS), which provides a water-tight seal (§A.2).

Our polymer solution is a dilute (C = 300 ppm ~ 0.3C") solution of hydrolyzed
polyacrylamide (HPAM) in water (10 wt.%) and glycerol (89 wt.%) with 1 wt.% NaCl
(Formulation A in §A.1). We inject our polymer solution through the porous medium at
a fixed volumetric flow rate Q using a syringe pump and begin imaging well after a time of
~ 300 <Dp WH — 7ID}2)H / 4) / Q, after which the flow reaches a dynamic equilibrium
in which the statistical properties of the flow do not appreciably change (§A.2.1). We in-
vert the setup and image the flow at the channel mid-plane using a resonant line scanning
confocal microscope (§A.2.2). To visualize the flow we disperse 1 ppm of fluorescent 1 um
polystyrene tracer particles, and average successive frames for 107,,, yielding the micro-
graphs shown in figures 2.3, 2.5, 2.6, 2.7, and 2.8. The particles can be considered faithful
tracers of the streamlines because tracer particle advection dominates over diffusion, as
described by the particle-scale Péclet number Pe = (Q/4)D,/D > 10°> > 1, where
D = kT/37y,D; = 6 x 107> um?/sis the Stokes-Einstein particle diffusivity. We thus
refer to the particle pathline measurements as fluid streamlines throughout this chapter.

The channel dimensions and polymer concentration used in our experiments enable us
to isolate the influence of polymer elongation and relaxation between pores, with a mini-
mal influence of polymer surface adsorption, flow-induced chain migration, wall slip, shear
banding, and polymer entanglement. As described further in appendix §A.7, we expect that
polymer adsorption, migration, and wall slip occur over length scales ~ 0.1 to 10 um, over
one to three orders of magnitude smaller than the smallest channel dimension L. = 400
wm. Also as described further in the appendix §A.7, we expect that shear banding and poly-

mer entanglement effects do not occur for the dilute concentrations explore here. How-
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ever, such effects could play a role in the flow of more concentrated polymer solutions in
media with smaller pores.

The shear stress varies approximately linearly with shear rate, with a shear thinning ex-
ponent ~ 0.92, indicating that shear thinning effects are small due to the high viscosity of
the background solvent. Indeed, the pure solvent viscosity is approximately 8 = 0.6 times
the measured solution viscosity. However, for accuracy, we use the rate-dependent shear
viscosity 7(3) = o(y)/y in all calculations. The shear rate varies widely within the complex
geometry used in our experiments; therefore, to determine a shear rate that characterizes
each experiment, we evaluate the wall shear rate in the pore throat at each value of Q tested,
since it is the maximal shear rate in our system. We do this using a numerical solution for a
power-law shear-thinning fluid. *»"*° We use this choice of the maximal shear rate to esti-
mate characteristic values of the fluid Reynolds number”, Weissenberg number’, Elasticity
number?, and the M parameter. In particular, this choice of wall shear rate enables us to
provide upper bounds for the fluid Reynolds numbers < 1, ensuring that inertia is negli-
gible throughout the flow, as well as the M parameter, whose maximal value is believed to
generate unstable flow.

An elastic instability arises when elastic stresses—characterized by a large value of Wi—

persist over curved streamlines. This persistence of elastic stresses occurs if the flow time

"Reynolds number at the pore-throat Re = pU.L/7(y), where p is the density of the solvent, U, = Q/4,
is the average speed corresponding to flow through the pore throat cross-section 4, = (W — D,)H,and
the length scale L is chosen to be half the constriction width %( W — D,). This estimate represents an upper
bound for the Reynolds number characterizing the flow; in our porous media experiments, Re ranges from
~8x10°t07 x 1073, indicating that viscous stresses dominate over inertial stresses.

"Weissenberg number at the pore throat Wi = N (7,)/24(y,), following convention, where _is the
maximal wall shear rate as described in 2.1. In our porous media experiments, Wi ranges from ~ 2 to 9, indi-
cating that elastic stresses dominate.

j;Elasticity number at the pore throat El = Wi/Re, which compares elastic stresses to inertial stresses, are
2 900. Our experiments thus probe the elasticity-dominated flow regime.
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scale U,/ %, where Z is the streamline radius of curvature, exceeds the polymer relaxation
time A. Thus, elastic stresses build up in the flow, leading to the generation of unstable
flow, when the parameter M = /2Wi - AU,/ exceeds a threshold value, as confirmed
experimentally for diverse flow geometries. """ Indeed, the M parameter is derived from

a linear stability analysis of the Navier-Stokes equation for a viscoelastic fluid; """ specifi-
cally, it represents the order of the largest destabilizing term in the Navier-Stokes equation,
which leads to the generation of unsteady flow. Therefore, M parameterizes the onset of
flow instability due to fluid elasticity, and we use this parameter to describe the different
flow regimes tested in our experiments. We evaluate M using the wall shear rate in the pore
throat at each value of Q tested, since this produces the maximal shear rate and therefore
the highest local M, which is believed to generate unstable flow.*' For this value of the
shear rate, we then use our measurements of polymer solution rheology to calculate Wi

as well as the rheological relaxation time A = Wi/j. Wefind 1 ~ 0.3to 65, in good
agreement with previous measurements performed on similar solutions.” Additionally,
we calculate the streamline radius of curvature using the empirical expression M for the
onset of unstable flow around a cylindrical post of diameter D, centered within a channel
of width W2 % ~ (Z/Dp +32.5/ W) !, where D, and W are as illustrated in figure 2.2.
We note that in our experiments, the posts are wall-centered instead of channel-centered;
determining whether and how this difference in geometry influences # will be a useful di-
rection for future theoretical work. Using the calculated values of Wi, 1, and &, we then
calculate M = /2Wi - AU, /Z. The corresponding values of M range from = 6 to 31 for

our experiments.
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2.2 ISOLATED PORE THROAT

To test the limiting case of widely-spaced pores (/; — 00), we first investigate flow through
an isolated pore throat centered in a channel. Atlow imposed flow rates, and thus at low
values of M, the flow is laminar: the fluid streamlines do not cross and do not change in
time. We do not observe eddies—instead, the streamlines smoothly converge as they ap-
proach the throat and symmetrically diverge as they leave it. However, above a threshold
value of M ~ 19, we observe the onset of a flow instability: a pair of unstable eddies forms
against the channel walls upstream of the pore throat, as exemplified in figures 2.3a-c (at the
pore throat) and d-f (upstream) for M = 19.4, 23.9, and 30.5.

Within each eddy, the fluid recirculates with a speed slower than the mean imposed flow
speed in the channel. The fluid streamlines continually fluctuate on long timescales, and
also continually cross, indicating that fluctuations in the flow occur on a time scale shorter
than the streamline duration of 107, (figures 2.3d-f). These fluctuations are reflected in the
motions of the eddy boundaries and lengths, which also fluctuate as the flow progresses.
Similarly, while the fluid in the region formed between the eddies does not recirculate, the
fluid streamlines also continually fluctuate on long timescales and continually cross, re-
flecting the presence of rapid fluctuations in the flow throughout. By contrast, the flow is
more steady downstream of the pore throat: we do not observe any eddies or marked tem-
poral changes in the flow for all values of M tested. This result is consistent with previous
observations of highly unstable eddies upstream of a cylinder in a channel, but suppressed

fluctuations and no eddies downstream.”” We therefore focus our subsequent analysis on
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Figure 2.3: streamline images of polymer solution flow through a straight channel with a single pore throat. streamline
images are averaged over 107,,. Flow rates are expressed via the M parameter, which equals 19.4, 23.9, and 30.5 for
panels a, b, and c respectively, corresponding to Weissenberg numbers Wi = 5.6, 6.9, and 8.8. a-c show strong re-
circulating eddies upstream of the pore throat, but no downstream eddies at any flow rate. d-f show the leftmost edge
of the eddies in front of the pore throat. Dashed lines indicate where the eddy-dominated region begins. x indicates the
distance in millimeters from the base of the hemi-cylinder. g-i show the measured eddy length over time normalized by
Tpy- Shaded regions show standard deviation around the temporal mean (dashed lines).
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Figure 2.4: Probability density functions of measured eddy sizes for different values of M, averaged over at least 77,
and over two separate replicate experiments, displayed vertically as heatmaps. a PDFs of Leddy/ W for a channel with
a single pore throat constriction. For each value of M there is a single characteristic eddy length that increases mono-
tonically with M. b PDFs of Leddy/ W for a channel with two widely-spaced pores [, = 16 ¥ apart. Again, for each
value of M there is a single characteristic eddy length that increases monotonically with M. ¢ PDFs of Atota|/Apore for a

porous medium with 30 closely-spaced pores [, = I apart. Here, the PDFs for M > 9 are bimodal, showing multiple

Acdgy Acidy . .
characteristic eddy areas (one peak at AA ~ 60% and one peak at AA =~ (). The two branches in the PDFs indicate
pore

pore

a bistability in unstable flow states.

the upstream region.

To further characterize this behavior, we track the eddy length L.44, over time for each
value of M tested. We measure Leqqy from the base of the hemi-cylinders (x = 0 in figure
2.3d) to the farthest upstream location having a streamline oriented perpendicular to the
imposed flow direction (dashed lines in figures 2.3d-f). Consistent with the visual observa-
tions, Lcqqy fluctuates over time in each experiment, as indicated by the shaded regions in
figures 2.3g-i; however, it fluctuates around a single mean value that increases with M. We
quantify these fluctuations using the coefficient of variation ¢,, defined as the ratio between
the standard deviation and the mean of the measurements of Lcq4, over time. Taking data
from two replicate experiments at these imposed flow rates, we find ¢, =~ 0.3,0.3,and 0.4
for M = 19.4, 23.9, and 30.5 respectively.

We summarize all of our measurements by plotting the probability density (PDF) of

time-averaged measured eddy lengths for each value of M tested. Below the threshold value
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of M & 19, we do not observe eddies and hence L.4q, = 0. By contrast, above this thresh-
old, Legay > 0 fluctuates about a well-defined mean value, which increases with M, as
shown in figure 2.4a. This increase in Leq4y is similar to previous measurements for iso-
lated constrictions; these studies demonstrate that eddies form when polymers are elon-
gated, and the size of eddies grows as polymers are increasingly elongated. ** Our results
thus suggest that flow fluctuations arising from unstable flow elongate the individual poly-
mer chains,””*~"*“ which then generate unstable upstream eddies to minimize extensional

stresses.

2.3 TwO WIDELY-SPACED PORE THROATS

We next investigate two pore throats spaced a distance /, = 1617 apart along the flow di-
rection. As we find with an isolated throat, the flow is laminar at low values of M, while
above a similar threshold value of M = 19, we observe the onset of the flow instability. A
pair of unstable eddies again forms against the channel walls upstream of each pore throat,
as exemplified in figures 2.5a-c (first throat) and d-f (second throat). Moreover, as with the
isolated pore throat, the flow is more steady immediately downstream of each throat, with
no observable eddies or temporal changes in the flow for any values of M tested.

We again quantify this behavior by measuring L.44, over time for each value of M tested.
For each pore throat, L.4q4y again fluctuates around a single mean value that increases with
M (figures 2.5g-i)—similar to the case of an isolated throat. The PDFs of the combined
time-averaged measurements of Lcq4y also reflect its increase with M, as shown in figure
2.4b. Intriguingly, however, we observe two key differences from the isolated throat. First,

while the mean values of L4qy are similar for the two pore throats, eddies upstream of the
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Figure 2.5: Streamline images of polymer solution flow through a straight channel with two pore throats separated by

I, = 161V. Streamline images are averaged over 107,,. Flow rates are expressed via the M parameter, which equals
19.4, 23.9, and 30.5 for a, b, and c respectively, corresponding to Wi = 5.6, 6.9, and 8.8. a-c show the leftmost
edge of the eddies in front of the first pore throat. d-f show the leftmost edge of the eddies in front of the second pore
throat. No eddies are observed downstream of either throat. g-i show the measured eddy lengths over time normalized
by 7, for pore 1 (green) and pore 2 (red). Shaded regions show standard deviation around the temporal mean (dashed
lines).
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second throat (red points, figures 2.5g-i) are slightly larger than eddies upstream of the

first throat (green points) for large values of M. Second, the eddies upstream of the second
throat are less unstable—the temporal fluctuations in L4q, are notably suppressed for the
second pore throat for all M above the threshold for unstable flow (compare red to green
shaded regions in figures 2.5g-i). Comparing the coefficients of variation confirms this find-
ing: for the first pair of eddies, ¢, = 0.2 & 0.1 while for the second pair, ¢, = 0.10 £ 0.02,
which is significantly smaller (p = 0.02, one-tailed z-test). Thus, when the spacing be-
tween pore throats is reduced, the spatio-temporal characteristics of the flow are altered—

presumably because polymer elongation can persist across multiple pores.

2.4 THIRTY CLOSELY-SPACED PORE THROATS

To further test the hypothesis that polymer memory impacts flow behavior, we next inves-
tigate flow through a medium with an even smaller spacing between pore throats. Specifi-
cally, the flow channel contains thirty pore throats spaced a distance /; = 7 apart along the
flow direction. In this case, we find that the flow behavior is strikingly different from the
larger /; cases described in Sections 2.2 and 2..3.

One key difference is that the threshold for the onset of the flow instability is dramati-
cally lowered. Atlow imposed flow rates, and thus at low values of M, the flow is laminar:
the fluid streamlines do not cross and do not vary over time. In this regime, a pair of small,
symmetric, laminar, recirculating eddies forms in the corners of each pore body due to the
small spacing between successive pore expansions and constrictions. Above a threshold
value of M =~ 9—considerably smaller than the threshold M =~ 19 for the single- and

double-throat cases—we observe the onset of unstable flow: the fluid streamlines continu-
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Figure 2.6: Streamline images of polymer solution flow through a porous medium with 30 pore throats separated by
Iy = W = 2mmatM = 11.4. Images span 2.11 mm across. Streamline images are averaged over 107,,. Pore
6 exemplifies the eddy-dominated state, with eddies that continually fluctuate both internally and at their boundaries,
while pore 2 exemplifies the eddy-free state, with strongly-fluctuating streamlines that fill the entire pore body.
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ally cross and vary over time. Thus, decreasing the spacing between pore throats decreases
the threshold value of M required for unstable flow, suggesting that polymer memory
strongly impacts the flow behavior.

Even more strikingly, we observe two distinct flow states that can arise in each pore body
throughout the medium: an ‘eddy-dominated’ state in which a pair of large unstable eddies
forms in the corners of the pore body, and an ‘eddy-free’ state in which strongly-fluctuating
fluid streamlines fill the entire pore body and eddies do not form. This surprising bistabil-
ity is illustrated in figure 2.6, which shows the streamline images taken sequentially from
each pore in the medium at M = 11.4. Pore 6 exemplifies the eddy-dominated state, with
eddies that continually fluctuate both internally and at their boundaries, while pore 2 ex-
emplifies the eddy-free state, with strongly-fluctuating streamlines that fill the entire pore
body. Though these snapshots are taken at an optical slice in the center of the channel
height, imaging at other heights shows similar flow streamlines, indicating that the spatial
structure of the flow does not vary appreciably across the channel height. This observation
is in stark contrast to the typical assumption that flow behavior in a porous medium is de-
termined just by injection conditions and the geometry of the individual pores.'*” Instead,
we find that different pores can exhibit distinct flow characteristics, even when the individ-
ual pore geometries and imposed flow rates are all identical.

To quantify this behavior, we measure the two-dimensional (2D) area of the individual
eddies A4.q4y over time for each value of M tested. In laminar flow, the eddies occupy only
~ 5% of the total area of a pore, which we define as Apore = Wi — WD; /4. By contrast,
unstable eddies in the eddy-dominated state have values of 4,44, that fluctuate strongly

in time, and whose mean value can be up to &~ 30% of Apore, while in the eddy-free state
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Figure 2.7: Streamline images of polymer solution flow through pores 13 a-c and 14 d-f at different flow rates corre-
sponding to M = 11.4, 15, and 19.4 (left to right). Streamline images are averaged over 107,,. g-i show the measured
eddy areas Aeddy//lpore over time normalized by 7, for pore 13 (green) and pore 14 (red). Upward triangles are for the
top region of the pore body, downward triangles are for the bottom region of the pore body.
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Aeady ~ 0. Intriguingly, while the two flow states are each unstable, the flow behavior

in each pore body appears to be bistable, as illustrated in figure 2.7: a pore will persist in a
given unstable flow state for a long duration of time before switching, seemingly randomly,
to the other flow state. For example, at M = 11.4, the upper eddy in pore 13 and the lower
eddy in pore 14 (figure 2.7g, upward-pointing red triangles and downward-pointing green
triangles respectively) persist in the eddy-dominated state over the entire imaging dura-
tion, while the lower eddy in pore 13 persists in the eddy-free state (downward red trian-
gles). However, the upper eddy in pore 14 initially switches from the eddy-free to the eddy-
dominated state, in which it persists for 157, before switching back to the eddy-free state
(upward green triangles). We observe this flow bistability in all pores of the medium, and at
all values of M tested; two more examples for M = 15 and 19.4 are shown in figures 2.7h-i
respectively.

To further characterize the flow bistability shown in figures 2.7g-i, we plot the PDFs of
the time-averaged measurements of 4,1, which describes the total 4.44, measured in each
pore combined for all thirty pores in the medium. Below M & 9, Aot & 10% of Apore,
and eddies do not change in time; by contrast, above the onset of the flow instability at
M = 9, the PDFs become bimodal, reflecting the bistability in flow behavior (figure 2.4¢).
The eddy-dominated state is represented by the upper branch of the PDFs, in which A
increases with M, eventually plateauing at &~ 60% of Apore at the highest values of M tested.
The eddy-free state is represented by the lower branch of the PDFs, in which Ao = 0
over all M. This bistability does not arise in porous media with wider pore spacings: the
lower branch of the PDFs does not appear in figures 2.4a-b. Thus, when the spacing be-

tween pore throats is reduced from /; = 161 to [, = W—and thus, elongation of indi-
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vidual polymers is more likely to persist across multiple pores—the flow abruptly becomes
bistable, exhibiting two coexisting unstable flow states. Indeed, previous work has theorized
that unstable flow may bifurcate into two coexisting flow states; *>'*>**” to our knowledge,

our work is the first experimental confirmation of this prediction.

2.5 BISTABILITY AND POLYMER CONFORMATIONS IN FLOW

How does this unusual flow bistability arise? Previous measurements of polymer confor-
mations indicate that differing fractions of coiled and elongated chains coexist in exten-
sional and unstable flows depending on the imposed flow conditions. **"*”* Furthermore,
simulations indicate that polymers having different elongation can have dramatically differ-
ing pore-scale flow behaviors. ***' Thus, we hypothesize that flow bistability arises from
the interplay between flow-induced polymer elongation, which promotes eddy formation,
and relaxation of polymers as they are advected between pores, which enables the eddy-free
state to form.

We first consider a pore in the eddy-dominated state. Polymers entering the pore are
likely in an elongated conformation due to the combined influence of unstable flow fluc-
tuations and extension by flow converging into the upstream pore throat. Indeed, previous
work has demonstrated that eddies form upstream of a constriction when polymers are
elongated. °~* Eddy formation minimizes extensional stresses in the center of the pore:
the net flow through the pore body occurs in a nearly-straight channel spanning one pore
throat to the next, as can be seen in the example of pore 6 in figure 2.6. For simplicity, we
consider the limit of large M, in which eddies completely fill the corners of the pore body.

With the exception of unstable fluctuations, the flow velocities in this channel are then
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aligned along the flow direction with speed ~ U, = Q/4, ~ 1 mm/s, and therefore

the extensional component of the flow in the channel is minimal. The elongated polymers
thus continue to relax as they are advected through this channel, reaching their equilibrium
coiled conformation after a duration ~ 1,4, the chain relaxation time. We compare this
time scale to the residence time required for the polymers to transit across the pore body
from the upstream throat to the downstream throat, ~ / /U, yielding an advective Debo-
rah number De,g, = A1 U; /. When [ is small and De,g, 2 1, chains are still elongated as
they enter the next pore body, thereby promoting eddy formation in the current pore and
the downstream pore as well. For our experiments in the unstable regime with [, = 7,
De,g, ranges from ~ 0.5 to 3 using A, ~ A ~ 1s; this estimate likely under-estimates
De,y, since A, is known to increase considerably in extensional flow. "** Thus, we expect
the eddy-dominated state to persist in the pore body over time before random flow fluctu-
ations cause it to switch to the eddy-free state, consistent with our measurements shown in
figures 2.7g-1. We also expect the eddy-dominated state to be correlated between neighbor-
ing pores.

We next consider the formation of the eddy-free state. As polymers pass through eddy-
dominated pores, they gradually relax to the coiled conformation. When a sufficient frac-
tion of coiled polymers are at the entrance to a pore, there will be no driving force for eddy
formation. The pore will thus be in the eddy-free state. The fluid streamlines then di-
verge from the upstream pore throat, creating a compressional flow that further promotes
the coiled conformation. As the polymers continue to traverse the pore body, they re-
main coiled until they encounter the converging flow into the downstream pore throat.

This extensional flow partially elongates the chains, which requires a time scale ~ A,
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We again compare this time scale to the residence time required for the polymers to tran-
sit from the beginning of the converging region to the downstream throat, in this case

~H <I/VDp /2 —nD3/ 8) / Q. This comparison yields another advective Deborah number
Dely, = 1Q/ [H (WD, /2 — zD3/ 8)] . When Del;, 2 1, chains are not elongated as
they enter the next pore body, thereby promoting the eddy-free state in the current pore
and the downstream pore as well. For our experiments in the unstable regime, De;, ranges
from~ 0.7 to S using l, ~ A ~ 1s,although these values again likely under-estimate
De! ;.. Thus, similar to the eddy-dominated state, we expect the eddy-free state to persist

in the pore body over time before random flow fluctuations cause it to switch to the eddy-

dominated state, consistent with our measurements shown in figures 2.7g-i. Moreover, we

again expect the eddy-free state to be correlated between neighboring pores.

2.6 TEMPORAL AND SPATIAL CHARACTERISTICS OF THE FLOW

The hypothesis presented in §2.5 makes two testable predictions: first, that the two dif-
ferent unstable flow states each persist over long times before randomly switching, and sec-
ond, that the flow states between neighboring pores 7 and 7 +-1 are correlated. We test these
predictions by investigating the temporal and spatial characteristics of the pore-scale flow.
Specifically, we simultaneously image two neighboring pores within the medium, pores
n = 2landn + 1 = 22,at M = 15 and monitor the flow states for 25007;,. Figure 2.8a
shows a snapshot of the flow streamlines imaged simultaneously and averaged over 107, at
an instance when both pores are in the eddy-dominated state.

The data in figures 2.7g—i support the first prediction that the two distinct flow states

persist over long times. To further test this prediction, we measure the distribution of dura-
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Figure 2.8: a Simultaneous streamline imaging of pores 21 and 22 averaged over 107, for M = 15.0. Both pores are
in the eddy-dominated state. b Probability density function of times between discrete switching events, representing
the duration over which a given flow state persists in pores 7 or 7z +- 1, for pores imaged over at least 4007,,. For
panels b and c, light blue shows M = 8.6 for z = 2, teal blue shows M = 15 forz = 2, and navy blue shows

M = 15 forn = 21. The data are broadly distributed with long tails. ¢ Instantaneous eddy areas of pores 7z and
pore n + 1 are positively correlated, indicating that flow states are correlated between neighboring pores. d Pearson
correlation coefficients between pores separated by a length ;AN and imaged sequentially a time SOTPVANapart for
M = 15.0. The flow state of each pore is averaged over 807,,. Thus, this analysis only quantifies any possible long-
time correlations that persist over time scales larger than SOTpVAN Light red shaded region indicates 99% confidence
interval for estimated correlation coefficient given the sampling size.
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tions over which each flow state persists in a given pore before switching to the other state;
we define a switching event as the instant when the total eddy area 4., in a given pore
crosses a threshold value of 0.05 4o This threshold is motivated by the clear separation
between the eddy-dominated and eddy-free states indicated by the probability density func-
tion in figure 2.4c. In agreement with our expectation, we find a broad distribution of long
flow persistence times with no characteristic persistence time, as shown by the navy blue
points in figure 2.8b—confirming our first prediction. Indeed, theoretical predictions for
two-state systems that have self-stabilizing states—similar to the eddy-dominated and eddy-
free states described here—also predict broad distributions of state persistence times.

The image in figure 2.8a supports the second prediction that the flow states in neigh-
boring pores are correlated. To further test this prediction, we measure the instantaneous
total eddy areas A o1, and Aopal 41 in poresz = 2land z + 1 = 22 by imaging both
pores simultaneously over several thousand 7,,. To visualize the streamlines of the indi-
vidual tracer particles, we average successive frames for 107,,; this procedure enables us to
determine the presence or absence of recirculating eddies in the pore bodies and provides
a way to directly measure the eddy areas by tracking the eddy boundaries, as exemplified in
figure 2.8a. We thereby compute the total eddy area 4., in each pore body of area Aporc.
Over the course of this experiment, the pore bodies exhibit the full range of flow behav-
iors: we measure the full range of possible total eddy sizes for each pore body, ranging from
Aot = 0 to the maximal value Aioiat & 0.54pore. Then, to quantify the correlation in
flow state between pores z and # + 1, we plot the total eddy areas simultaneously mea-
sured for both pores at different times, A o1, a0d Arorar 541 respectively. These measure-

ments show a positive correlation between the instantaneous flow states of neighboring
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poresn = 2landn + 1 = 22 over the imaging duration, as shown by the navy blue
points in figure 2.8c. We quantify this correlation using the Pearson correlation coefficient
Prms1 = COV (Amtahﬂ,Atoml,,,H)) / [o(Arotal ) o(Arotal, n+1)], where cov is the covariance and
o is the standard deviation of the instantaneous measurements of Ao, and Aol 441 OVEr
the different times. We find Poray = 0.55 > 0, confirming a positive correlation between
the eddy sizes in the neighboring pores 21 and 22 that is statistically significant (p» < 0.001,
two-tailed #-test). Thus, the unstable flow states in neighboring pores are correlated with
each other, confirming our second prediction.

To further test how this behavior varies spatially and with M, we repeat these measure-
ments near the inlet at pores # = 2 and z 4 1 = 3 at two different flow rates corresponding
toM = 15and M = 8.6. We expect that decreasing the flow rate will decrease the advec-
tive Deborah numbers De,q, and De; thus we expect that at lower flow rates, unstable
flow states will still be broadly distributed, but will persist over shorter time scales. Our data
confirm th